1、=3/5=0.6,=0.3,1.31=,0.0062=。伴随着数的概念而来的是数的运算,数的运算是人们分析、判断和解决实际问题的重要手段。完成“合作学习”(见课本)你能帮小慧列出算式吗?如果利用自然数怎样列算式?用分数呢?2、某市民政局举行一次福利彩票销售活动,销售总额度为4000万元。其中发行成本占总额度的15,1400万元作为社会福利资金,其余作为中奖着奖金。(1)你能算出奖金总额是多少吗?你是怎样算的?(2)为了使福利资金提高10,而发行的成本保持不变,有人提出把奖金总额减小6。你认为这个方案可行吗?你是怎样获得结论的?上面问题2中的第(2)题可以用如下算式求解:20006-140010
2、=120-140算式中被减数小于减数,在这种情况下,能否进行运算?能否用我们已经学过的自然数和分数来表示结果?看来数还需作进一步的扩展。目的:一是让学生进一步体验数的运算是人们分析、判断、解决实际问题的重要工具;二是从解决实际问题的过程中让学生感受到,光有自然数和分数仍是不够的,数需作进一步的扩展。(三)课堂小节让学生谈谈学了本节课后,对数的认识和了解。(1) 自然数在实际应用中,有计数,测量结果,标号,排序的作用。(2) 分数在实际应用中,起着分配和测量结果的作用。(四)布置作业 见作业本。1.2有理数一、教学目标1 .理解有理数产生的必然性、合理性及有理数的分类;2 .能辨别正、负数,感受
3、规定正、负的相对性;3 .体验中国古代在数的发展方面的贡献。有理数的概念建立正数、负数的概念对学生来说是数学抽象思维一次重大飞跃。(一)从学生原有的认知结构提出问题大家知道,数学与数是分不开的,它是一门研究数的学问现在我们一起来回忆一下,小学里已经学过哪些类型的数?学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的为了表示一个人、两只手、,我们用到整数1,2,4.87、为了表示“没有人”、“没有羊”、,我们要用到0但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示(二)师生共同研究形成正负数概念某市某
4、一天的最高温度是零上5,最低温度是零下5要表示这两个温度,如果只用小学学过的数,都记作5,就不能把它们区别清楚它们是具有相反意义的两个量现实生活中,像这样的相反意义的量还有很多例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的 “运进”和“运出”,其意义是相反的同学们能举例子吗?学生回答后,教师提出:怎样区别相反意义的量才好呢?待学生思考后,请学生回答、评议、补充教师小结:同学们成了发明家甲同学说,用不同颜色来区分,比如,红色5表示零下5,黑色5表示零上5;乙同学说,在数字前面加不同符号来区分,比如,5表示零上5,5表示零下5其实,中国古代数学
5、家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”如今这种方法在记账的时候还使用所谓“赤字”,就是这样来的现在,数学中采用符号来区分,规定零上5记作+5(读作正5)或5,把零下5记作-5(读作负5)这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了让学生用同样的方法表示出前面例子中具有相反意义的量:高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;教师讲解:什么叫做正数?什么叫做负数?强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量并指出,正数,负数的“+”
6、“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号(三)介绍有理数的有关概念。1给出新的整数、分数概念引进负数后,数的范围扩大了过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数。2给出有理数概念整数和分数统称为有理数。 3有理数的分类为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数有理数还有没有其他的分类方法?按有理数的符号分为三类:正有理数、负有理数和零。并指出,在有理数范围内,
7、正数和零统称为非负数并向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类(四)运用举例 变式练习例 下列给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数?哪些是有理数?-8.4,22,+,0.33,0,-,-9课堂练习见课本第8-9页(五)小结教师引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数正数是大于0的数,负数就是在正数前面加上“-”号的数0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0六、练习设计1北京一月份的日平均
8、气温大约是零下3,用负数表示这个温度2在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖,图中标着-392,这表明死海的湖面与海平面相比的高度是怎样的?3在下列各数中,哪些是正数?-3.6,-4,9651,-0.14如果-50元表示支出50元,那么+200元表示什么?5在以下说法中,正确的是 A非负有理数就是正有理数B零表示没有,不是有理数C正整数和负整数统称为整数D整数和分数统称为有理数6如果自行车车条的长度比标准长度长2毫米记作+2毫米,那么比标准长度短3毫米记作什么?7一物体可以左右移动,设向右为正,问:(1)向左移动12米应记作什么?(2)“记作8米”表明什么?七、教学
9、后记这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的从内容上讲,负数比非负数要抽象、难理解因此学生通过这节课只能对负数概念有初步的理解,使学生掌握正负数的记法和它的描述性定义,要求不能过高对有理数的深入理解将在以后的学习中逐步加强在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则,教师在课堂上要起好主导作用,并让学生有充分的活动机会,使得课堂气氛有新鲜感所以这节课采取了在教师的启发引导下,师生共同探究解决的途径,以谈话法为主同时,教师的语言要尽量儿童化1.3数轴1 .理解数轴、相反数的概念;2 .掌握数轴的画法、数轴上的点与有理数的关系;
10、3 .会用数轴上的点表示相反数,探索他们的位置关系;4 .感受数形结合与转化。重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数难点:正确理解有理数与数轴上点的对应关系(一)从学生原有认知结构提出问题1小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?2用“射线”能不能表示有理数?3你认为把“射线”做怎样的改动,才能用来表示有理数呢?待学生回答后,教师指出,这就是我们本节课所要学习的内容数轴(二)讲授新课让学生观察挂图放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从
11、而得到所测的温度在0上10个刻度,表示10;在0下5个刻度,表示-5与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零具体方法如下(边说边画):1画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0);2规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0以上为正,0以下为负);3选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,提问:
12、我们能不能用这条直线表示任何有理数?(可列举几个数)在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?通过上述提问,向学生指出:数轴的三要素原点、正方向和单位长度,缺一不可(三)运用举例例1指出数轴上A,B,C,D,E各点分别表示什么数例2画一个数轴,并在数轴上画出表示下列各数的点:(1)0.5,-,0,-0.5,-4,1.4;(2)200,-150,-50,100,-100.想一想:-4与4有什么相同和不
13、同之处?它们在数轴上的位置有什么关系?-与,-0.5与0.5呢?(四)介绍相反数的概念和性质。如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。比如,-的相反数是,4是-4的相反数。注意,零的相反数是零。观察归纳得到相反数性质:在数轴上,表示互为相反数(零除外)的两个点,位于原点的两侧,并且到原点的距离相等。例如,表示-100和100的点分别位于原点的左侧和右侧,到原点的距离都是100个单位长度。例:求5,0,-的相反数,并把这些数及其相反数表示在数轴。见课本第12-13页最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零
14、用原点表示(四)小结指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究1在下面数轴上:(1)分别指出表示-2,3,-4,0,1各数的点(2)A,H,D,E,O各点分别表示什么数?2在下面数轴上,A,B,C,D各点分别表示什么数?3下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:
15、(1)-5,2,-1,-3,0; (2)-4,2.5,-1.5,3.5;从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等1.4绝对值1 .理解绝对值的概念与几何意义;2 .会求一个数的绝对值
16、(不涉及字母)及绝对值等于某一正数的有理数;3 .探索绝对值的简单应用。正确理解绝对值的概念 绝对值的实际意义是什么?为什么它是正数或零?这些问题学生不好理解,因此,绝对值的概念也是难点。1、下列各数中:+7,-2,-8.3,0,+0.01,-,1,哪些是正数?哪些是负数?哪些是非负数?2、什么叫做数轴?画一条数轴,并在数轴上标出下列各数:-3,4,0,3,-1.5,-4,2 3、问题2中有哪些数互为相反数?从数轴上看,互为相反数的一对有理数有什么特点?4、怎样表示一个数的相反数?(二)师生共同研究形成绝对值概念例1 两辆汽车,第一辆沿公路向东行驶了5千米,第二辆向西行驶了4千米,为了表示行驶
17、的方向(规定向东为正)和所在位置,分别记作+5千米和-4千米。这样,利用有理数就可以明确表示每辆汽车在公路上的位置了。我们知道,出租汽车是计程收费的,这时我们只需要考虑汽车行驶的距离,不需要考虑方向。当不考虑方向时,两辆汽车行驶的距离就可以记为5千米和4千米(在图上标出距离) 这里的5叫做+5的绝对值,4叫做-4的绝对值。例2 两位徒工分别用卷尺测量一段1米长的钢管,由于测量工具使用不当或读数不准确,甲测得的结果是1.01米,乙侧得的结果是0.98米,甲测量的差额即多出的数记作+0.01米,乙测量的差额即减少的数记作-0.02米。如果不计测量结果是多出或减少,只考虑测量误差,那么他们测量的误差
18、分别是0.01和0.02,这里所说的测量误差也就是测量结果所多出来或减少了的数+0.01和-0.02绝对值。如果请有经验的老师傅进行测量,结果恰好是1米,我们用有理数来表示测量的误差,这个数就是0(也可以记作+0或-0),自然这个差额0的绝以值是0 现在我们撇开例题的实际意义来研究有理数的绝对值,那么,+5的绝对值是5,在数轴上表示+5的点到原点的距离是5;-4的绝对值是4,在数轴上表示-4的点到原点的距离是4;+0.01的绝对值是0.01,在数轴上表示+0.01的点到原点的距离是0.01;-0.02的绝对值是0.02,在数轴上表示-0.02的点它到原点的距离是0.02;0的绝对值是0,表明它
19、到原点的距离是0 一般地,一个数a的绝对值就是数轴上表示a的点到原点的距离 为了方便,我们用一种符号来表示一个数的绝对值,约定在一个数的两旁各画一条竖线来表示这个数的绝对值。如+5的绝对值记作+5,显然有+5=5;-0.02的绝对值记作-0.02,显然有-0.02=0.02;0的绝对值记作0,也就是0=0 a的绝对值记作a,(提醒学生a可以是正数,也可以是负数或0)求下列各数的绝对值:-1.6, ,0,-10,+10.由例3学生自己归纳出:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0 这也是绝对值的代数定义,把绝对值的代数定义用数学符号语言如何表达?把文字叙述语言变换
20、成数学符号语言,这是一个比较困难的问题,教师应帮助学生完成这一步 1、用a表示一个数,如何表示a是正数,a是负数,a是0?由有理数大小比较可以知道:a是正数:a0;a是负数:a0;a是0:a=02、怎样表示a的本身,a的相反数?a的本身是自然数还是a,a的相反数为-a.现在可以把绝对值的代数定义表示成 如果a0,那么=a;如果a0,那么=-a;如果a=0,那么=0 由绝对值的代数定义,我们可以很方便地求已知数的绝对值了 练习: 求8,-8,-,0,6,-,-5的绝对值 例4 求绝对值等于4的数。分析:因为数轴到原点的距离等于4个单位长度的点有两个,即表示+4的点和表示-4的点,所以绝对值等于4
21、的数是+4和-4。(三)课堂练习1、下列哪些数是正数?-2,-(-2),-2、计算下列各题:|-3|+|+5|;|-3|+|-5|;|+2|-|-2|;|-3|-|-2|;|-|;|-2|;|。指导学生阅读教材,进一步理解绝对值的代数和几何意义 1、填空:(1)+3的符号是_,绝对值是_;(2)-3的符号是_,绝对值是_;(3)-的符号是_,绝对值是_;(4)10-5的符号是_,绝对值是_ 2、填空:(1)符号是+号,绝对值是7的数是_;(2)符号是-号,绝对值是7的数是_;(3)符号是-号,绝对值是0 35的数是_;(4)符号是+号,绝对值是1的数是_;3、(1)绝对值是的数有几个?各是什么
22、?(2)绝对值是0的数有几个?(3)有没有绝对值是-2的数?4、计算:(1)|-15|-|-6|; (2)|-0.24|+|-5.06|; (3)|-3|(4)|+4|-5|; (3)|-12|+2|; (6)|20| 1.5有理数大小的比较1 .从生活实例中探索利用数轴比较有理数大小的规律;2 .通过观察、猜测、验证、概括用绝对值比较有理数大小的法则;3 .了解关于有理数大小比较的简单推理及书写。比较有理数的大小的各条法则。如何比较两个负数(尤其是两个负分数)的大小的绝对值法则。(一)、从学生原有的认识结构提出问题。1数轴怎么画?它包括哪几个要素?2大于0的数在数轴上位于原点的哪一侧?小于0
23、的数呢?(二)、师生共同探索利用数轴比较有理数大小的法则。1、在温度计上显示的两个温度,上边的温度总比下边的温度高,例如,5在-2上边, 5高于-2;-1在-4上边,-1高于-4下面的结论引导学生把温度计与数轴类比,自己归纳出来:(1)在数轴上表示的两个数,右边的数总比左边的数大(2)正数都大于零,负数都小于零,正数大于负数。2、运用举例,变式练习。 观察数轴,能否找出符合下列要求的数,如果能,请写出符合要求的数:(1)最大的正整数和最小的正整数;(2)最大的负整数和最小的负整数;(3)最大的整数和最小的整数;(4)最小的正分数和最大的负分数在解本题时应适时提醒学生,直线是向两边无限延伸的3、
24、课堂练习。例2在数轴上画出表示下列各数的点,并用“”把它们连接起来。 4.5,6,-3,0,-2.5,-4通过此例引导学生总结出“正数都大于0,负数都小于0,正数大于一切负数”的规律要提醒学生,用“”连接两个以上数时,小数在前,大数在后,不能出现504这样的式子(三)师生共同探索利用绝对值比较负数大小的法则。1、利用数轴我们已经会比较有理数的大小。由上面数轴,我们可以知道-4-30.43,其中-4,-3都是负数,它们的绝对值哪个大?显然|3|引导学生得出结论:两个正数比较,绝对值大的数大;两个负数比较,绝对值大的反而小。这样以后在比较负数大小时就不必每次再画数轴了2、运用举例 变式练习。例3、
25、 比较-4与-|3|的大小 例4、 已知ab0,比较a,-a,b,-b的大小 例5、 比较-与-的大小 3、课堂练习(1)比较下列每对数的大小:;|2|与(2)比较下列每对数的大小:(四)、小结先由学生叙述比较有理数大小的两种方法利用数轴比较大小和利用绝对值比较大小,然后教师引导学生得出:比较两个有理数的大小,实际上是由符号与绝对值两方面来确定,学习了绝对值以后,就可以不必利用数轴来比较两个有理数的大小了。(五)布置作业1比较下列每对数的大小:2把下列各组数从小到大用“”号连接起来:(1)3,-5,-4; (2)-9,16,-11;3下表是我国几个城市某年一月份的平均气温,把它们按从高到低的顺序排列4、判断下列各式是否正确:(1)|-0.1|-0.01|; (2)|- | (3) (4)-5、较下列每对数的大小:(1)-(2)-与-0 273;(4)- (5)- (6)- 6、写出绝对值大于3而小于8的所有整数。在传授知识的同时,一定要重视学科基本思想方法的教学,关于这一点,布鲁纳有过精彩的
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1