ImageVerifierCode 换一换
格式:DOCX , 页数:16 ,大小:189.65KB ,
资源ID:16948240      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/16948240.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(控制系统的滞后超前校正设计文档格式.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

控制系统的滞后超前校正设计文档格式.docx

1、分析、计算编写程序1撰写报告摘要自动控制原理在工程应用中有了不可缺少作用,拥有非常重要的地位,一个理想的控制系统更是重要。然而,理想的控制系统是难以实现的。要想拥有一个近乎理想的控制系统,就得对设计的控制系统进行校正设计。对于一个控制系统,要想知道其的性能是否满足工程应用的要求,就得对系统进行分析。对性能指标不满足要求的系统必须对其校正,目前常用的无源串联校正方法有超前校正、滞后校正和滞后-超前校正。滞后-超前校正方法融合了超前和滞后校正的特点,具有更好的校正性能。在校正设计过程中需要利用仿真软件MATLAB绘制系统的伯德图、根轨迹和单位阶跃响应曲线以获得系统的相关参数。在本文中采用的滞后-超

2、前校正设计校正了不稳定系统,使校正后的系统变得稳定且满足了性能指标要求,达到了校正的目的。关键字:滞后-超前、系统校正、控制系统的滞后超前校正设计1设计题目和设计要求1.1题目1.2初始条件1.3设计要求1.4主要任务1)用MATLAB画出满足初始条件的最小K值的系统伯德图,计算系统的幅值裕度和相角裕度。2)向通路中插入一相位滞后超前校正,确定校正网络的传递函数。3)用MATLAB画出未校正和已校正系统的根轨迹。4)用Matlab画出已校正系统的单位阶跃响应曲线、求出超调量、峰值时间、调节时间及稳态误差。5)课程设计说明书中要求写清楚计算分析的过程,列出MATLAB程序和MATLAB输出。2设

3、计原理系统校正,就是在系统中加入一些机构或装置,使系统整个性能发生改变,改善系统的各项性能指标,从而满足给定的性能指标要求。插入系统的机构或装置其参数可根据校正前系统的需要来设计校正环节的结构参数,从而达到校正系统的目的。校正环节分为无源校正和有源校正。常用的无源校正环节有滞后校正、超前校正、滞后-超前校正这三种类型。本文主要采用滞后-超前校正。2.1滞后-超前校正原理无源滞后-超前校正网络的电路图如图2-1所示。由并联的R1和C1和串联的R2和C2组成滞后-超前网络。图2-1 无源滞后-超前校正网络电路图其传递函数为: (2-1)式中:经过化简后可得: (2-2)其中,是校正网络的滞后部分,

4、是校正网络的超前部分。无源滞后-超前网络的对数幅频渐近特性曲线如图2-2所示,其低频部分和高频部分均起始于和终止于0dB水平线。从图中可知,只要确定a, b,和a,或者确定Ta, Tb,和a三个独立的变量,校正网络的对数幅频渐近线的形状和传递函数就可以确定。图2-2 无源滞后-超前网络对数幅频特性曲线滞后-超前校正环节同时具有滞后校正和超前校正的优点,即已校正系统响应速度较快,超调量较小,抑制高频噪声的性能也较好。当待校正系统不稳定,且要求校正后系统的响应速度、相位裕度和稳态精度较高时,采用滞后-超前校正为宜。其基本原理是利用滞后-超前网络的超前部分来增大系统的相位裕度,同时利用滞后部分来改善

5、系统的稳态性能。采用解析法的滞后-超前校正的设计步骤如下:(1)根据稳态性能要求确定开环增益K。(2)绘制未校正系统的对数频率特性曲线,求出开环截止频率、相角裕度、幅值裕度;(3)在未校正系统对数频率特性曲线上,选择一频率作为校正后的截止频率,使,要求的相角裕度将由校正网络的超前部分补偿;(4)计算需要补偿的相角,并由确定值;(5)选择校正网络滞后部分的零点(6)跟据未校正系统在处的分贝值,由得出(7)由上述参数确定校正环节的传递函数和校正后系统的传递函数(8)将得到的数据与设计要求对比,如符合要求,则设计成功,否则,就需要调整滞后部分的相关参数,得到新的滞后部分传递函数,直至符合设计要求为止

6、。3设计方案在选择合适的校正方案之前,应先计算系统的相关参数和对系统的稳定性判断。判定方法是用MATLAB画出未校正系统的伯德图,算出未校正系统的相角裕度和幅值裕度,根据计算结果判别系统是否稳定以及选定合适的校正方案。3.1校正前系统分析3.1.1确定未校正系统的K值由静态速度误差系数的定义: (3-1)根据任务设计要求系统的静态速度误差系数可得:K=20,于是可得待校正系统的开环传递函数为: (3-2)3.1.2未校正系统的伯德图和单位阶跃响应曲线和根轨迹1)绘制未校正系统的伯德图程序如下,未校正系统伯德图如图3-1所示。思路:定义三个变量num2,den2,sys2分别保存系统K值、传递函

7、数分母多项式的乘积和系统传递函数的结果。最后调用margin函数画出系统伯德图,并且画出网格。从图上即可读出相角裕度和幅值裕度。num2=10;den2=conv(conv(1,0,1,1),0.5,1);sys2=tf(num2,den2);margin(sys2)grid ontitle(未校正系统伯德图)2)绘制未校正系统的单位阶跃响应曲线程序如下,单位阶跃响应曲线如图3-2所示。在调用feedback函数计算系统的单位阶跃响应并保存在变量sys2_step中。最后调用step函数画出系统的单位阶跃响应曲线,并且画出网格。从图上即可观察系统的单位阶跃响应。sys2_step=feedba

8、ck(sys2,1);step(sys2_step)图3-1 未校正系统伯德图3)绘制未校正系统的根轨迹曲线程序如下,单位阶跃响应曲线如图3-3所示。最后调用rlocus函数画出系统根轨迹。rlocus(sys2)hold on图3-2 未校正系统的单位阶跃响应曲线图3-3 未校正系统的根轨迹3.1.3未校正系统的相角裕度和幅值裕度未校正系统伯德图如图3-1所示,从图中可得出未校正系统的穿越频率为1.41rad/s,对应的幅值裕度为-10.5dB,截止频率为2.43rad/s,对应的相角裕度为-28.1由于相角裕度小于零,幅值裕度小于1为负值,说明未校正系统不稳定。从图3-2更加直观的看出未校

9、正系统的动态性能,未校正系统的单位阶跃响应曲线呈发散震荡形式,系统严重不稳定。3.2方案选择由计算的幅值裕度和相角裕度可知原系统是不稳定的,根据任务设计要求要使校正后的系统的相角裕度,所以本文采用滞后-超前校正设计,增大系统的相角裕度,同时改善系统的稳态性能。4设计分析与计算4.1校正环节参数计算根据给定的系统性能指标结合计算出来的未校正系统的截止频率、幅值裕度和相角裕度,按照滞后-超前校正的设计步骤,确定出校正环节参数。4.1.1已校正系统截止频率的确定为了降低系统的阶次,且保证中频区斜率为-20dB/dec且占有较宽的频带,由得 (4-1)解得: 取4.1.4校正环节滞后部分交接频率任务设

10、计要求,为保证校正后的系统满足要求,取由得:所以由所以: 4.1.1校正环节超前部分交接频率4.2校正环节的传递函数把上述计算得到的结果带入式(2-2)可得校正环节的传递函数: (4-2)4.3已校正系统传递函数把式(3-2)未校正系统的传递函数和式(4-2)校正环节的传递函数相乘即可得到已校正系统的传递函数: (4-3)根据计算的参数可知,校正后系统的截止频率为5已校正系统的仿真波形及仿真程序5.1已校正系统的根轨迹绘制已校正系统的根轨迹曲线程序如下,校正后系统的根轨迹如图6-1所示。定义三个变量num1,den1,sys1分别保存校正环节的分子多项式的乘积、校正环节分母多项式的乘积和校正环

11、节传递函数的计算结果。定义三个变量num2,den2,sys2分别保存未校正系统分子多项式的乘积、未校正系统分母多项式的乘积和未校正系统传递函数的计算结果。用sys3保存校正后的系统的传递函数的计算结果。调用rlocus函数画出校正后系统根轨迹。num1=conv(6.67,1,1.13,1);den1=conv(50.36,1,0.15,1);sys1=tf(num1,den1);sys3=series(sys1,sys2);rlocus(sys3)图6-1 已校正系统的根轨迹5.2已校正系统的伯德图绘制已校正系统的伯德图程序如下,校正后系统的伯德图如图6-2所示。从图上即可读出校正后系统的

12、相角裕度和幅值裕度。margin(sys3)图6-2 已校正系统的伯德图5.3已校正系统的单位阶跃响应曲线绘制已校正系统的单位阶跃响应曲线程序如下,单位阶跃响应曲线如图6-3所示。用feedback函数计算校正后系统的单位阶跃响应并将结果保存在变量sys3_step中,最后调用step函数画出系统的单位阶跃响应曲线,并且画出网格。从图上即可观察系统的单位阶跃响应以及校正后系统时域的性能参数。sys3_step=feedback(sys3,1);step(sys3_step)图6-3 已校正系统的单位阶跃响应曲线6结果分析从已校正系统的伯德图中可得到校正后系统的相角裕度,对应的截止频率,幅值裕度

13、,对应的穿越频率为,图6-2所示,设计的滞后-超前校正环节达到了系统校正的指标要求。校正前系统是不稳定的,校正后系统变稳定。校正后的相角裕度从-28.1增大到45.8,幅值裕度从-10.5dB提高到15.2dB。意味着系统的阻尼比增大,超调量减小,系统的动态性能变好。校正后系统的截止频率从2.43rad/s减小到1.21rad/s,意味着系统的抗高频干扰能力增强,但是,调节时间略有加长。从已校正系统的单位阶跃响应曲线中可得,如图6-3所示,校正后系统的参数为:上升时间:峰值时间:调节时间:峰值:稳态值:超调量:稳态误差:7总结与体会参考文献1 胡寿宋. 自动控制原理(第四版). 北京:科学出版

14、社,20012 王万良. 自动控制原理. 北京:高等教育出版社,20083 刘坤. MATLAB自动控制原理习题精解. 北京:国防工业出版社,20044 郭阳宽 王正林. 过程控制工程及仿真:基于MATLAB/Simulink. 北京:电子工业出版社,2009 5 卢京潮. 自动控制原理. 西安:西北工业大学出版社,2004成绩评定依据:评 定 项 目最高分限评分成绩1选题合理、目的明确102设计方案正确、具有可行性、创新性203设计结果(例如:系统设计程序、仿真程序) 4态度认真、学习刻苦、遵守纪律155设计报告的规范化、参考文献充分(不少于5篇)6答辩25总 分100最终评定成绩(以优、良、中、及格、不及格评定)指导教师签字: 年 月 日

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1