ImageVerifierCode 换一换
格式:DOCX , 页数:26 ,大小:269.87KB ,
资源ID:16918669      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/16918669.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(基于单片机的步进电机驱动设计终稿解读.docx)为本站会员(b****2)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

基于单片机的步进电机驱动设计终稿解读.docx

1、基于单片机的步进电机驱动设计终稿解读课程设计论文 题 目: 基于单片机的步进电机驱动设计学 院: 测试与光电工程学院 专业名称: 电子科学与技术班级学号: 09083110 学生姓名: XXX 指导教师: 王庆 2012年 12月 摘要步进电动机是一种将脉冲信号变换成相应的角位移(或线性位移)的电磁装置,是一种特殊的电动机。步进电动机由于精确性以及其良好的性能,其组成的开环系统既简单、廉价,又非常可行,因此在打印机等办公自动化设备以及各种控制装置等众多领域有着极其广泛的应用。本文介绍了以51系列单片机AT89C51为控制核心所设计的步进电机的控制系统,用C语言编写出电机的正转、反转、加速、减速

2、、停止程序,通过单片机、电机的驱动芯片以及相应的按键实现以上功能,并且步进电机的工作状态要用相应的发光二极管显示出来。本文内容介绍了步进电机以及单片机原理、该系统的硬件电路、程序组成,同时对软、硬件进行了调试,同时介绍了调试过程中出现的问题以及解决问题的方法。该设计具有思路明确、可靠性高、稳定性强等特点,通过调试实现了上述功能。关键词:步进电机、AT89C51、控制系统 基于单片机的步进电机驱动设计1 绪论随着微电子和计算机技术的发展,步进电动机的需求量与日俱增,研制步进电机驱动器及其控制系统具有十分重要的意义。步进电机是一种进行精确步进运动的机电执行元件,它广泛应用于工业机械的数字控制,为使

3、系统的可靠性、通用性、可维护性以及性价比最优,根据控制系统功能要求及步进电机应用环境,确定了设计系统硬件和软件的功能划分,从而实现了基于8051单片机的四相步进电机的开环控制系统。控制系统通过单片机存储器、I/O接口、中断、键盘、LED显示器的扩展、步进电机的环形分频器、驱动及保护电路、人机接口电路、中断系统及复位电路、单电压驱动电路等的设计,实现了四相步进电机的正反转,急停等功能。为实现单片机控制步进电机系统在数控机床上的应用,系统设计了两个外部中断,以实现步进电机在某段时间内的反复正反转功能,也即数控机床的刀架自动进给运动,随着单片机技术的不断发展,单片机在日用电子产品中的应用越来越广泛,

4、步进电机的应用得到很大的提高。步进电机是一种将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的它最突出的优点是可以在宽广的频率范围内通过改变脉冲频率来实现调速,快速起停、正反转控制及制动等,并且用其组成的开环系统既简单、廉价,又非常可行,因此在打印机等办公自动化设备以及各种控制装置等众多领域有着极其广泛的应用。2 步进电机工作原理由于步进电机是一种将电脉冲信号转换成直线或角位移的执行元件,

5、它不能直接接到交直流电源上,而必须使用专业设备-步进电机控制驱动器,典型步进电机控制系统如图1所示:控制器可以发出脉冲频率从几赫兹到几千赫兹可以连续变化的脉冲信号,它为环形分配器提供脉冲序列,环形分配器的主要功能是把来自控制环节的脉冲序列按一定的规律分配后,经过功率放大器的放大加到步进电机驱动电源的各项输入端,以驱动步进电机的转动,环形分配器主要有两大类:一类是用计算机软件设计的方法实现环形分配器要求的功能,通常称软环形分配器。另一类是用硬件构成的环形分配器,通常称硬环形分配器。功率放大器主要对环形分配器的较小输出信号进行放大,以达到驱动步进电机的目的,步进电机的基本控制包括转向控制和速度控制

6、两个方面。从结构上看,步进电机分为三相单三拍、三相双三拍和三相六拍3种,其基本原理如下:2.1 换相顺序的控制通电换相这一过程称为脉冲分配。例如,三相步进电机在单三拍的工作方式下,其各相通电顺序为ABCA,通电控制脉冲必须严格按照这一顺序分别控制A、B、C相的通断。三相双三拍的通电顺序为ABBCCAAB,三相六拍的通电顺序为AABBBCCCAA。2.2 步进电机的换向控制如果给定工作方式正序换相通电,步进电机正转。若步进电机的励磁方式为三相六拍,即AABBBCCCAA。如果按反序通电换相,即AACCCBBBAA,则电机就反转。其他方式情况类似。2.3 步进电机的速度控制如果给步进电机发一个控制

7、脉冲,它就转一步,再发一个脉冲,它会再转一步。两个脉冲的间隔越短,步进电机就转得越快。调整送给步进电机的脉冲频率,就可以对步进电机进行调试。2.4 步进电机的起停控制步进电机由于其电气特性,运转时会有步进感。为了使电机转动平滑,减小振动,可在步进电机控制脉冲的上升沿和下降沿采用细分的梯形波,可以减小步进电机的步进角,跳过电机运行的平稳性。在步进电机停转时,为了防止因惯性而使电机轴产生顺滑,则需采用合适的锁定波形,产生锁定磁力矩,锁定步进电机的转轴,使步进电机转轴不能自由转动。2.5 步进电机的加减速控制在步进电机控制系统中,通过实验发现,如果信号变化太快,步进电机由于惯性跟不上电信号的变化,这

8、时就会产生堵转和失步现象。所有步进电机在启动时,必须有加速过程,在停止时波形有减速过程。理想的加速曲线一般为指数曲线,步进电机整个降速过程频率变化规律是整个加速过程频率变化规律的逆过程。选定的曲线比较符合步进电机升降过程的运行规律,能充分利用步进电机的有效转矩,快速响应性好,缩短了升降速的时间,并可防止失步和过冲现象。在一个实际的控制系统中,要根据负载的情况来选择步进电机。步进电机能响应而不失步的最高步进频率称为“启动频率”,于此类似“停止频率”是指系统控制信号突然关断,步进电机不冲过目标位置的最高步进频率。电机的启动频率、停止频率和输出转矩都要和负载的转动惯量相适应,有了这些数据,才能有效地

9、对电机进行加减速控制。加速过程有突然施加的脉冲启动频率f0。步进电机的最高启动频率(突跳频率)一般为0.1KHz到34KHz,而最高运行频率则可以达到N*102KHz,以超过最高启动频率的频率直接启动,会产生堵转和失步的现象。在一般的应用中,经过大量实践和反复验证,频率如按直线上升或下降,控制效果就可以满足常规的应用要求。用PLC实现步进电机的加P减速控制,实践上就是控制发脉冲的频率。加速时,使脉冲频率增高,减速则相反。如果使用定时器来控制电机的速度,加减速控制就是不断改变定时中断的设定值。速度从v1v2变化,如果是线性增加,则按给定的斜率加P减速;如果是突变,则按阶梯加速处理。在此过程中要处

10、理好两个问题:速度转换时间应尽量短。为了缩短速度转换的时间,可以采用建立数据表的方法。结合各曲线段的频率和各段间的阶梯频率,就可以建立一个连续的数据表,并通过转换程序将其转换为定时初始表。通过在不同的阶段调用相应的定时初值,就可控制电机的运行。定时初值的计算是在定时中断外实现的,并不占用中断时间,保证电机的高速运行。保证控制速度的精确性。要从一个速度准确达到另一个速度,就要建立一个校验机制,以防超过或未达到所需速度。2.6 步进电机的换向控制步进电机换向时,一定要在电机降速停止或降到突跳频率范围之内在换向,以免产生较大的冲击而损坏电机。换向信号一定要在前一个方向的最后一个脉冲结束后以及下一个方

11、向的第一个脉冲前发出。对于脉冲的设计主要要求其有一定的脉冲宽度、脉冲序列的均匀度及高低电平方式。在某一高速下的正、反向切换实质包含了降速换向加速3个过程。步进电机有如下特点:1 步进电机的角位移与输入脉冲数严格成正比,因此当它转一转后,没有累计误差,具有良好的跟随性。2 由步进电机与驱动电路组成的开环数控系统,既非常方便、廉价,也非常可靠。同时,它也可以有角度反馈环节组成高性能的闭环数控系统。3 步进电机的动态响应快,易于启停、正反转及变速。4 速度可在相当宽的范围内平滑调节,低速下仍能保证获得很大的转矩,因此一般可以不用减速器而直接驱动负载。5 步进电机只能通过脉冲电源供电才能运行,它不能直

12、接用交流电源或直流电源。6 步进电机自身的噪声和振动比较大,带惯性负载的能力强。图2-1 步进电机工作时序波形图ABCDN1000N+10100N+20010N+30001表2-1 四相单四拍脉冲分配表ABCDN1100N+10110N+20011N+31001表2-2 四相双四拍脉冲分配表3 步进电机系统软件设计本系统的软件设计主要分为系统初始化、延时子程序、按键响应程序,数码管显示程序,读子程序及控制脉冲输出几部分,事实上每一部分都是紧密相关的,每个功能模块对于整体设计都是非常重要,单片机AT89S51通过软件编程才能使系统真正的运行起来,软件设计的好坏也直接决定了系统的运行质量。程序流程

13、图的设计遵循自顶向下的原则,即从主体遂逐步细分到每一个模块的流程。在流程图中把设计者的控制过程梳理清楚。系统主程序流程图如图4-1所示。图3-1 主程序流程图3.1 步进电动机控制程序步进电机的正转,反转,加速减速是通过对Direct和speed标志位的检测而定的,其正反转的程序控制流程图如下图3.1-1所示。图3.1-1 步进电机的正转流程图图3.1-2 步进电机的反转流程图3.2 按键扫描子程序 本次设计要求有3个按键,分别为加速、减速和换向。由于键盘数量比较少,所以本次设计采用矩阵键盘,其中Speed为加速键、Slow为减速,。当用手按下一个键时,往往按键在闭合位置和断开位置之间跳几下才

14、稳定到闭合状态的情况;在释放一个键时,也回会出现类似的情况。这就是抖动。抖动的持续时间随键盘材料和操作员而异,不过通常总是不大于10ms。很容易想到,抖动问题不解决就会引起对闭合键的识别。用软件方法可以很容易地解决抖动问题,这就是通过延迟3-10ms来等待抖动消失,这之后,在读入键盘码,按键扫描子程序如图3.2-1所示。图3.2-1 按键部分流程图3.3 加、减程序设计1、加速部分 当电机正转或反转的时候,按下加速键,调用加速子程序,使电机每转动一步的延时时间变短,从而实现电机的加速。流程图如图3.3-1所示。 图3.3-1 加速部分流程图2、减速部分电机正转或反转的时候,按下减速键,通过改变

15、电机每转动一步的延时时间,使时间变长,从而实现电机减速。流程图如图4.6所示。 图3.3-2 减速部分流程4 步进电机系统硬件设计本设计的硬件电路只要包括控制电路、单片机最小系统、驱动电路、显示电路四大部分。最小系统只要是为了使单片机正常工作。控制电路只要由开关和按键组成,由操作者根据相应的工作需要进行操作。显示电路主要是为了显示电机的工作状态和转速。驱动电路主要是对单片机输出的脉冲进行功率放大,从而驱动电机转动。系统总体设计方框图如图4-1所示从该系统的设计要求可知,该系统的输入量为速度和方向,速度应该有增减变化,通常用加减按钮控制速度,这样只要2根口线,再加上一根方向线盒一根启动信号线共需

16、要4根输入线。系统的输出线与步进电机的绕组数有关。这里选进电机,该电机共有四相绕组,工作电压为+5V,可以个单片机共用一个电源。步进电机的四相绕组用P1口的P1.0P1.3控制,由于P1口驱动能力不够,因而用一片2803增加驱动能力。用P0口控制第一数码管用于显示正反转,用P2口控制第二个数码管用于显示转速等级。数码管采用共阳的。4.1 单片机最小系统单片机最小系统或者称为最小应用系统,素质用最少的元件组成的单片机可以工作的系统,对51系列单片机来说,最小系统一般应该包括:单片机、复位电路、晶振电路。本设计采样Atmel公司生产的89C52单片机是一种低功耗/低电压高性能的8位单片机,它采用C

17、MOS和高密度非易失性存储技术,而且其输出引脚和指令系统都与MCS-51兼容;片内的Flash ROM允许在系统内改编程序或用常规的非易失性编程器来编程,内部除CPU外,还包括256字节RAM,4个8位并行I/O口,5个中断源,2个中断优先级,2个16位可编程定时计数器,89C52单片机是一种功能强、灵活性高且价格合理的单片机,完全满足本系统设计需要。 复位电路:使用了独立式键盘,单片机的P1口键盘的接口。该设计要求只需4个键对步进电机的状态进行控制,但考虑到对控制功能的扩展,使用了6路独立式键盘。复位电路采用手动复位,所谓手动复位,是指通过接通一按钮开关,使单片机进入复位状态,晶振电路用30

18、PF的电容和一12M晶体振荡器组成为整个电路提供时钟频率。晶振电路:8051单片机的时钟信号通常用两种电路形式电路得到:内部震荡方式和外部中断方式。在引脚XTAL1和XTAL2外部接晶振电路器(简称晶振)或陶瓷晶振器,就构成了内部晶振方式。由于单片机内部有一个高增益反相放大器,当外接晶振后,就构成了自激振荡器并产生振荡时钟脉冲。内部振荡方式的外部电路如图5示。其电容值一般在530pf,晶振频率的典型值为12MHz,采用6MHz的情况也比较多。内部振荡方式所得的时钟信号比较稳定,实用电路实用较多。图4.1-1 单片机最小系统原理图4.2 步进电机驱动电路步进电机是数字控制电机,它将脉冲信号转变成

19、角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。步进电机区别于其他控制电机的最大特点是:它是通过输入脉冲信号来进行控制的,即电机的总转动角度由输入脉冲数决定,而电机的转速由脉冲信号频率决定。步进电机分三种:永磁式(PM),反应式(VR)和混合式(HB),步进电机又称为脉冲电机,是工业过程控制和仪表中一种能够快速启动,反转和制动的执行元件,其功用是将电脉冲转换为相应的角位移或直线位移,由于开环下就能实现精确定位的特点,使其在工业控制领域获得了广泛应用。步进电机的运转是由电脉冲信号控制的,其角位移量或线位移量与脉冲数成正比,每个一个脉冲,步进电机就转动一个角度(不距角)

20、或前进、倒退一步。步进电机旋转的角度由输入的电脉冲数确定,所以,也有人称步进电机为数字/角度转换器。 四相步进电机的工作原理 该设计采用四相步进电机,采用单极性直流电源供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机转动。当某一相绕组通电时,对应的磁极产生磁场,并与转子形成磁路,这时,如果定子和转子的小齿没有对齐,在磁场的作用下,由于磁通具有力图走磁阻最小路径的特点,则转子将转动一定的角度,使转子与定子的齿相互对齐,由此可见,错齿是促使电机旋转的原因。 步进电机的静态指标及术语 相数:产生不同队N、S磁场的激磁线圈对数,常用m表示。 拍数:完成一个磁场周期性变化所需脉冲用n表示,

21、或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即ABBCCDDAAB,四相八拍运行方式即AABBBCCCDDDAA。步距角:对应一个脉冲信号,电机转子转过的角位移用表示。=360度(转子齿角运行拍数),以常规二、四相,转子齿角为50齿角电机为例。四相运行时步距角zz x为=360度/(50*4)=1.8度,八拍运行时步距角为=360度/(50*8)=0.9度。定位转矩:电机在不通电的状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的)。静转矩:电机在额定静态作业下,电机不做旋转运动时,电机转轴的锁定力矩。此力矩是衡量电机体积的标准,与驱动电压及驱动电源等无

22、关。虽然静态转矩与电磁激磁匝数成正比,与定子和转子间的气隙有关。但过分采用减小气隙,增加励磁匝数来提高静转矩是不可取的,这样会造成电机的发热及机械噪音。四相步进电机的脉冲分配规律 目前,对步进电机的控制主要有分散器件组成的环形脉冲分配器、软件环形脉冲分配器、专用集成芯片环形脉冲分配器等。本设计利用单片机进行控制,主要是利用软件进行环形脉冲分配。四相步进电机的工作方式为四相单四拍,双四拍和四相八拍工作的方式。各种工作方式在电源通电时的时序 与波形分别如图1 a、b、c所示。本设计的电机工作方式为四相单四拍,根据步进电机的工作的时序和波形图,总结出其工作方式为四相单四拍时的脉冲分配规律,四相双四拍

23、的脉冲分配规律,在每一种工作方式中,脉冲的频率越高,其转速就越快,但脉冲频率高到一定程度,步进电机跟不上频率的变化后电机会出现失步现象,所以脉冲频率一定要控制在步进电机允许的范围内。ULN是集成达林顿管IC,内部还集成了一个消线圈反电动势的二极管,可用来驱动继电器。它是双列16脚封装,NPN晶体管矩阵,最大驱动电压=50V,电流=500mA,输入电压=5V,适用于TTL COMS,由达林顿管组成驱动电路。 ULN是集成达林顿管IC,内部还集成了一个消线圈反电动势的二极管,它的输出端允许通过电流为200mA,饱和压降VCE 约1V左右,耐压BVCEO 约为36V。用户输出口的外接负载可根据以上参

24、数估算。采用集电极开路输出,输出电流大,故可直接驱动继电器或固体继电器,也可直接驱动低压灯泡。ULN2003的作用:ULN2003是大电流驱动阵列,多用于单片机、智能仪表、PLC、数字量输出卡等控制电路中。可直接驱动继电器等负载。 输入5VTTL电平,输出可达500mA/50V。ULN2003是高耐压、大电流达林顿陈列,由七个硅NPN达林顿管组成。 ULN2003的每一对达林顿都串联一个2.7K的基极电阻,在5V的工作电压下它能与TTL和CMOS电路 直接相连,可以直接处理原先需要标准逻辑缓冲器。ULN2003 是高压大电流达林顿晶体管阵列系列产品,具有电流增益高、工作电压高、温度范围宽、带负

25、载能力强等特点,适应于各类要求高速大功率驱动的系统。ULN2003A引脚图及功能如图4.2-1所示。 图3.2-1 ULN2003A引脚图ULN2003 是高耐压、大电流、内部由七个硅NPN 达林顿管组成的驱动芯片。 经常在以下电路中使用,作为显示驱动、继电器驱动、照明灯驱动、电磁阀驱动、伺服电机、步进电机驱动等电路中。ULN2003 的每一对达林顿都串联一个2.7K 的基极电阻,在5V 的工作电压下它能与TTL 和CMOS 电路直接相连,可以直接处理原先需要标准逻辑缓冲器来处理的数据。ULN2003 工作电压高,工作电流大,灌电流可达500mA,并且能够在关态时承受 50V 的电压,输出还可

26、以在高负载电流并行运行。ULN2003 的封装采用DIP16 或SOP16 。ULN2003可以驱动7个继电器,具有高电压输出特性,并带有共阴极的续流二极管使器件可用于开关型感性负载。每对达林顿管的额定集电极电流是500mA,达林顿对管还可并联使用以达到更高的输出电流能力。通常单片机驱动ULN2003时,上拉2K的电阻较为合适,同时,COM引脚应该悬空或接电源。ULN2003是一个非门电路,包含7个单元,但独每个单元驱动电流最大可达350mA.资料的最后有引用电路,9脚可以悬空。 比如1脚输入,16脚输出,你的负载接在VCC与16脚之间,不用9脚,步进电机驱动电路如图4.2-2所示。图4.2-

27、2 步进电机驱动电路4.3 显示电路在该步进电机的控制器中,电机可以正反转,可以加速、减速,其中电机转速的等级分为七级,为了方便知道电机的运行状态和电机的转速的等级,这里设计了电机转速和电机的工作状态的显示电路。在显示电路中,主要是利用了单片机的P0口和P2口。采用两个共阳数码管作显示。第一个数码管接的a、b、c、d、e、f、g、h分别接P0.0P0.7口,用于显示电机正反转状态,正转时显示“1”,反转时显示“一”,不转时显示“0”。第二个数码管的a、b、c、d、e、f、g、h分别接P2.0P2.7口,用于显示电机的转速级别,共七级,即从17转速依次递增,“0”表示转速为零。系统显示电路如图4

28、.3-1所示。图4.3-1 显示电路4.4 按键电路 本系统通过3个按键加上拉电阻构成系统的按键输入电路,按键电路原理图如图4.4-1所示。图4.4-1 按键电路电路原理图5 系统调试5.1 软件调试 把编好的程序(包括正反转程序、停止程序、显示程序等)合理安排好结合到一起进行编译。由于编译只能检查是否存在语法错误,所以还要看是否存在逻辑错误。程序修改好以后,当显示编译0错误,0警告的时候,这说明已经没有语法错误了,是否有逻辑错误还要看接上电路板通过仿真以后,步进电机能否正常转动,显示是否正常。5.2 硬件调试电路的工作离不开电源,所以电源是必不可少的。电源采用的是利用变压器将220V的电压转

29、换为12V的电压,再利用桥堆整流使交流电变成直流电,最后分别利用LM7812和LM7805芯片得到12V和5V的电压。电路板焊接好以后,首先要检查一下电路设计是否合理、元器件焊接是否正确,焊接好以后需要仔细检查。用万用表分别检测从7812和7805第三个端口出来的是否是12V和5V,结果发现7805两端电压正常,7812两端电压非常不稳定。用万用表仔细检查了每根线,发现了原因,电路板存在虚焊的现象。再次将电路板焊好,检查好以后,用万用表检测两端输出电压,结果正确,电源准备工作完毕。步进电机一开始不能正常转动,以为是电路焊接有问题,为了防止再次出现虚焊,首先将电路板用万用表检查了一遍,没问题。程

30、序也是正确的。后来仔细看了步进电机工作原理,原来步进电机要正常实现正反转,四个相序必须弄清。把电机接上电源,用高电平分别接触电机的引线,每接触一下电机就会向前或向后转动一下,经过几次试验,终于搞清了电机的四个相序,排列顺序分别是1A,2C,3B,4D。弄清了相序,把电路板重新布线,焊接好,结果电机能够正常转动了。6 总结6.1 论文工作总结本次毕业设计能够实现步进电机的启停、正反转以及速度的调节,通过本次毕业设计加强了我对软件编程和硬件设计的掌握,并且熟悉了ULN2004、74ls11等芯片。步进电机在控制系统中具有广泛的应用。它可以把脉冲信号转换成角位移,并且可用作电磁制动轮、电磁差分器、或

31、角位移发生器等,所以说步进电机有着广阔的市场和远大的发展前景。本设计实现了占用CPU时间少,效率高;易于控制步进电机的转向转速;提高了步进电机的步进精度等。再有,本设计过程考虑比较周全,可以方便灵活地控制步进电机的运行状态,以满足不同用户的要求,因此常把单片机步进电机控制电路称之为可编程步进电机控制驱动器。步进电机控制(包括控制脉冲的产生和分配)使用软件方法,即用单片机实现,这样既简化了电路,也减低了成本。6.2 对后续工作的展望本文虽然在应用单片机对步进电机的控制果真取得了一些研究成果,提出了解决方案和可行性算法。但是在芯片的发展,以及出现了更高级的芯片能够很好的控制步进电机,能够很大程度上提高电机的精确性和稳定性。从总体来说,本文重点是实现了AT89C51对步进电机的控制实现以及对单片机的外围电路等进行了基础性的研究,由于时间和条件的限制,虽然取得了一定的效果,但尚存在一定不足之处有待今后进一步解决。7 结束语在这一次单片机最小系统的设计过程中,通过对自己所学的知识的回顾,并充分发挥对所学知识的理解和对课程设计的思考及书面表达能力,最终完成了。这为自己今后进一步深化学习,积累了一定宝贵的经验。撰写设计论文的过程也是专业

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1