ImageVerifierCode 换一换
格式:DOCX , 页数:9 ,大小:229.20KB ,
资源ID:16860713      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/16860713.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(城市污水工业废水对水体影响Word格式文档下载.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

城市污水工业废水对水体影响Word格式文档下载.docx

1、 此次研究主要集中在太湖流域的西苕溪水系和宜溧-洮滆水系(图 1).苕溪分东、西两支,其中,西苕溪为太湖的主要入湖河流,发源于浙江省安吉县和安徽省宁国县境内天目山区,流经安吉县、湖州市,后与东苕溪汇合于小梅 口和大钱口最终汇入太湖.西苕溪水系年均注入太湖水量为1.89109 m3,约占太湖年均入湖水量的18%.图1 太湖流域主要入湖水系河流沉积物及水样采样点位示意图 宜溧水系和洮滆水系分别发源于茅山与苏浙皖三省交界处的界岭山地和金坛境内茅山东麓.宜溧水系经宜兴的西氿、团氿和东氿3个湖泊后于大浦、长兜港等主要 河道汇入太湖.洮滆水系通过漕桥河、太滆运河、殷村港、烧香港等东西向的主干河道后汇入太湖

2、竺山湾,同时通过丹金溧漕河、扁担河-孟津河、武宜运河、锡溧 漕河等多条南北向河道与宜溧水系相贯通.因此,宜溧-洮滆水系共同构成了太湖湖西区平原网状水系,年均注入太湖水量为4.88109 m3,约占太湖年均入湖水量的50%,也是入湖污染负荷通量最大的水系.2.2 水样、表层沉积物样品采集与分析 对两个水系的主要支流及汇合区域进行水质和表层沉积物采样点的布设,共设定采样点位102个(图 1),并于2014年1月完成沉积物及水样的采集工作.其中,西苕溪水系采样点16个,宜溧-洮滆水系采样点86个.在每个采样点位使用2.5 L采水器采集水面下0.5 m处水样1000 mL,低温下避光保存;用彼德森采泥

3、器随机采集2份表层(010 cm)沉积物样品,现场去除贝类、枯枝等杂物后混合均匀并装入聚乙烯袋密封.采样结束后,立即将所有样品运回实验室分析. 原水样用于测定总氮(TN)浓度,经0.45 m醋酸纤维滤膜过滤后的水样用于测定氨氮(NH4+-N)、硝态氮(NO3-N)和亚硝态氮(NO2-N)浓度.参照水和废水监测分析方法,使 用碱性过硫酸钾消解紫外分光光度法测定TN浓度,水杨酸-次氯酸盐光度法测定NH4+-N浓度,酚二磺酸分光光度法测定NO3-N浓度,N-(1-萘 基)-乙二胺光度法测定NO2-N浓度. 沉积物样品自然风干后研磨过100目筛,用于测定TN、NH4+-N和NO3-N含量,沉积物样品各

4、形态N含量的计算均以沉积物干重为基准.采用半微 量开氏法测定TN含量,KCl提取-钠氏比色法测定NH4+-N含量,饱和硫酸钙提取-紫外分光光度法测定NO3-N的含量.有机氮(ON)含量为TN 与NH4+-N、NO3-N的含量之差.因为NO2-N是硝化反硝化反应中间体,极不稳定,且含量通常很低可忽略,因此,表层沉积物中只分析TN、 NH4+-N、NO3-N及ON的含量.采用SPSS 19.0和R软件等进行数据统计分析,对水系表层沉积物各形态N含量设定p0.05和p0.01两种置信度水平进行差异的显著性比较;利用ArcMap 10软件绘制沉积物各形态N含量空间分布图.3 结果与分析3.1 水体中N

5、污染基本特征 从TN指标评价,西苕溪、宜溧-洮滆水系水质全部不及地表水环境质量标准(GB38382002)V类,研究区域水体中N污染程度严重.在上覆水体的 各形态N中,虽然两个水系中TN、NH4+-N和NO3-N浓度的最大值相差不大,但宜溧-洮滆水系这几项指标的平均值和最小值均高于西苕溪水系(表 1).针对各形态N而言,NO3-N浓度约占TN的40%左右,在各形态N中所占比例较大;而NO2-N浓度占TN的比例不到1%.表1 上覆水体中不同形态氮的浓度3.2 沉积物中N形态与空间分布 如表 2所示,西苕溪水系表层沉积物中TN含量的均值(2164.9 mg kg-1)显著高于宜溧-洮滆水系(983

6、.5 mg kg-1).从N的形态上看,沉积物中的ON和NH4+-N含量在西苕溪水系较宜溧-洮滆水系高.两个水系沉积物中ON含量的平均值分别为2034.41 mg kg-1和917.77 mg kg-1,ON占TN的百分比分别为93.90%和92.99%(表 2和图 3);其次为NH4+-N,两个水系沉积物中的平均值分别为120.90 mg kg-1和49.85 mg kg-1.可见,ON是河流沉积物中N的主要存在形式,而NH4+-N为无机氮(IN)的主要存在形式.NO3-N在两个水系沉积物中含量普遍较低,但 其在宜溧-洮滆水系中的含量比西苕溪水系略高,平均值为13.95 mg kg-1.表2

7、 表层沉积物各形态氮含量 各形态N含量在西苕溪和宜溧-洮滆水系空间上具有较大的变化(表 2),如TN的最小值仅为142.60 mg kg-1,最大值可达12597.68 mg kg-1,相差超过88倍;NH4+-N的最大值超过最小值600倍.由图 2可知,TN和NH4+-N的最大值均出现在西苕溪水系的高桥附近.沉积物NO3-N最大值和最小值分别位于宜溧-洮滆水系的新塘桥附近和西苕溪水系的 红山村附近.ON空间分布特征与TN相似,其最小值位于西苕溪水系的东彭家村附近,最大值位于该水系的高桥附近.从两个水系的上下游分析,发现在城市分布 较为密集的区域,TN含量明显增大;但在无城镇聚集区域,两条水系

8、沉积物中TN含量变化规律不明显.图2 层沉积物总氮、氨氮、硝态氮、有机氮含量及空间分布图3 表层沉积物各形态氮所占质量百分数 3.3 不同形态N之间及沉积物-水体之间的相关性分析 沉积物样品中TN、NH4+-N、NO3-N和ON含量的Spearman相关性分析表明(表 3),表层沉积物TN与NH4+-N、ON呈显著相关关系(p0.01),与ON的相关系数达0.997;ON与NH4+-N和NO3-N也呈 显著的正相关关系(p0.01),且与NH4+-N的相关系数高于NO3-N.表3 表层沉积物不同氮素相关系数 从沉积物-上覆水体的相关关系看(表 4),沉积物中TN含量与上覆水体中的TN(p0.0

9、5)和NH4+-N(p0.01)浓度呈显著相关,沉积物中NH4+-N含量与上覆 水体的TN、NH4+-N和NO3-N呈显著相关(p0.01),同时沉积物的NO3-N含量与上覆水体的TN和NO3-N呈显著相关关系 (p0.01),但所有的相关系数较小,均小于0.4.此外,宜溧-洮滆水系的上覆水体NO3-N浓度与水温呈显著正相关关系 (p0.01),相关系数为0.555,而与DO呈显著负相关关系(p0.01),相关系数0.502(表 5).表4 上覆水体与表层沉积物氮素相关性系数表5 上覆水体硝态氮与水温、pH、溶解氧的相关性系数 4 讨论4.1 表层沉积物N素的关系 根据美国EPA中沉积物TN污

10、染评价标准,西苕溪水系河流表层沉积物TN平均含量超过1000 mg kg-1,已达中度污染水平,而宜溧-洮滆水系表层沉积物TN含量均值为983.52 mg kg-1,接近中度污染水平.两个水系的表层沉积物中TN含量的空间分布呈现一定的相似性(图 2),即TN含量在城市下游呈现明显增加的趋势,尤其是在城镇化程度较为发达的无锡、常州武进区等地区,可能是受上游城市生活污水排放、工业废水排放的影 响,如在西苕溪水系的高桥采样点,TN的最大值可达12598 mg kg-1,而通过现场调研发现该站点上游附近确有工业废水及生活污水直接排入河道,导致河水变黑并伴随恶臭味. 从空间上看,两个水系沉积N的分布上有

11、所差异.西苕溪水系上游的土地利用类型主要以林地为主,所占比例约87%,中下游耕地面积的比例不断增大,所占比 例由4%不断增大到30%.已有研究表明,N的输出会随着耕地比例的增加而增加.理论上西苕溪流域沉积物TN含量应该出现逐渐增大的趋势,但由于西苕溪水 系利用水利设施进行闸坝调控,沉积物TN分布受水文、水动力条件影响较大,其含量会突然在某处出现高值,如西苕溪水系的马岭村采样点,高值点为 8283.89 mg kg-1.而对于宜溧-洮滆水系的沉积物而言,其不断受到航运扰动及河流输运的影响,TN含量在主要河道内(丹金溧漕河、武宜运河等)沿程变化不大. 从形态上看,沉积物中TN主要以ON形式存在(占

12、90%以上),IN主要以NH4+-N形式存在,特别对于西苕溪水系而言,其表层沉积物ON和 NH4+-N含量很高.曾经对7条环太湖河流和太滆南运河入湖口沉积物中IN的形态进行了分析,研究结果均表明,NH4+-N为沉积物中IN的主要存在形 态,其他河流相关研究也显示这一特征.此外,沉积物中NH4+-N的含量与有机质含量、沉积环境及水动力情况等有关.沉积物表层几个毫米以下属于缺氧或厌 氧状态,ON在该环境条件下降解产生NH4+-N并不断累积于沉积物中,因此,两个水系的NH4+-N是各自IN的主要存在形式.此外,西苕溪水系养殖业 (禽畜养殖、淡水养殖)较为密集,有机物浓度较高,又因闸坝调控影响,水体流

13、通不畅,船运扰动小,水体中的NH4+-N逐步沉积在沉积物表层,使得该水系 沉积物中NH4+-N含量较高;而宜溧-洮滆水系在沉积物中累积的NH4+-N在船舶扰动和水流输运作用下易于向水体释放,导致其含量低于西苕溪水系.4.2 上覆水体与表层沉积物N素的关系 沉积物-水界面的物质交换可对上覆水体的营养水平和环境质量产生不可忽视的影响.当上覆水体浓度较高时,其所含营养盐不断向表层沉积物富集,使沉积物中 相应营养盐含量增加.当沉积物中各形态N的浓度高于上覆水体中相应的N形态的浓度时,在浓度梯度的驱动下,沉积物中的IN具有上覆水体释放的潜能,进而影 响上覆水体中相关营养盐的浓度. 宜溧-洮滆水系沉积物中

14、TN、NH4+-N、ON含量均远低于苕溪水系,但上覆水体中这些形态N的浓度均高于苕溪水系,尤其是NO3-N浓度,在宜溧 -洮滆水系的水体和沉积物中均高于苕溪水系.水体中NO3-N浓度较高的原因可能在于以下两点:宜溧-洮滆水系所在流域为苏南地区城镇、人口和工业最 为密集的区域,污染负荷以城市生活污水及工业废水为主,河流中N的污染较为严重,NO3-N浓度相应较高;宜溧-洮滆水系主要河道不断受到航运的扰 动,水体中NH4+-N不能有效地沉降,而且波浪导致的沉积物悬浮促使所含营养盐产生释放,从而造成水体中溶解性或无机态的营养盐浓度增加.同时,水体在 剧烈扰动下复氧能力增强,硝化作用也所有加强,从而导致

15、上覆水体中较高的NO3-N浓度,表 5显示水体中NO3-N的浓度与水体温度、DO和pH值等环境因子均具有显著相关性也证明了这一点,即硝化反应速率在水温高的条件下较快,在消耗水体溶 解氧的同时降低其pH值.沉积物中NO3-N浓度略高的原因可能在于波浪扰动增加了DO在沉积物中的侵蚀深度,从而改变沉积物-水界面的氧化还原环境, 使表层沉积物处于弱氧化状态,在该条件下硝化作用增强,导致部分NH4+-N逐步向NO3-N转化.4.3 西部河网N的迁移转化与输运过程分析 氮污染在流域空间上产生和排入河道后,在向河口输运的过程中会经历一系列的物理化学和生物学反应,例如,氨化、硝化和反硝化、吸附解析及沉淀与再悬

16、浮过 程.其中,硝化与反硝化、沉淀与再悬浮是影响其输运通量的主要过程.除水温、DO和pH等环境因素外,N在输运过程中的停留时间是影响其生物学过程损失的 最重要因素. 西苕溪水系因闸坝调控影响,水体流通不畅,船运扰动小,沉积物中氮易于蓄积,N在输运的过程中停留时间较长,在沉积物表层好氧和亚表层缺氧状态条件下, 其有足够的时间进行硝化和反硝化作用,较高的反硝化速率将导致水体中NO3-N的浓度较低,沿程损失较大.而对于宜溧-洮滆水系来说,其主要特点在于频 繁的船运扰动,沉积物不断发生沉淀与再悬浮,使得水体及沉积物中主要发生的是硝化作用,相关研究亦证实西部河网沉积物中反硝化潜能较弱,因此,该水系水体

17、和沉积物中均含有较高的NO3-N.此外,该水系流量大,占太湖入湖水量的50%左右,流域上的氮在输运过程中由于缺乏有效停留时间,削减量有限,从而 对入湖通量贡献较大.值得指出的是,本研究主要结合野外调查数据分析了研究区沉积物和上覆水体N的空间分布,今后需进一步定量研究沉积物-水界面之间N的迁移转化、N的释放潜能及其在河网内的输运过程,为入湖污染物的控制提供更加可靠有效的依据.5 结论 1)宜溧-洮滆水系和西苕溪水系表层沉积物TN分布各异,变化范围在142.6012597.68 mg kg-1间.西苕溪水系的表层沉积物中TN含量高于宜溧-洮滆水系,已达中度污染水平.TN含量在流经城市分布密集区域之

18、后呈现出明显增加的趋势,表明沉 积物TN分布与城市污水、工业废水等排放有一定的关系. 2)宜溧-洮滆水系和西苕溪水系的表层沉积物中NH4+-N含量远高于NO3-N含量,介于2.541317.03 mg kg-1之间.ON分布与TN相似,变化范围为133.8611232.55 mg kg-1,占TN百分比的90%以上.由此可见,NH4+-N为IN的主要形式,ON为沉积物中TN的主要存在形式. 3)宜溧-洮滆水系城镇密布、工业发达,加上航运对沉积物的剧烈扰动,水体中各形态N浓度相对苕溪水系较高,同时,水体复氧能力增强使其NO3-N浓 度略高于苕溪水系.相反,苕溪水系沉积物受扰动较小,沉积物中TN和NH4+-N易于累积,其含量远高于宜溧-洮滆水系沉积物.4)沉积物中各形态N的浓度均高于上覆水体中相应形态N的浓度,并且研究的沉积物中各形态N(表 3)与上覆水体中N浓度(表 4)之间均表现出一定的相关性.在浓度梯度和航运扰动等因素的驱动下,沉积物中的N营养盐具有向上覆水体释放的潜能.目前湖北武汉市有多家企业选择了将污水处理交第三方运行管理的模式,帮助企业实现污水处理设施安全运行、达标运行、经济运行是格林公司的愿望和目的,武汉格林环保设施运营有限责任公司,也将继续为您关注工业污水、 生活污水污水处理外包、污水处理运营的行业动态。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1