ImageVerifierCode 换一换
格式:DOCX , 页数:32 ,大小:57.81KB ,
资源ID:16825855      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/16825855.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数列知识点总结和题型归纳总结Word文档格式.docx)为本站会员(b****4)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

数列知识点总结和题型归纳总结Word文档格式.docx

1、Sn Sn 1(n 2)(3) 1, 0, 1, 0, 1, 0, (4)a, a, a, a, a, 5)数列 an的前 n项和 Sn与通项 an的关系: an已知数列 an的前 n项和sn 2n2 3,求数列 an的通项公式练习:1根据数列前 4 项,写出它的通项公式: (1)1,3,5,7;22 1, 321, 42 1,52 12)23453)1,1,。1*22*33*44*54)9,99,999,9999(6)8, 88, 888, 8888 2数列 an 中,已知 ann2 nN)1)写出 a1, ,a2, a3,an 1 , an2 ;5)7,77,777,7777,2 ) 79

2、 2 是否是数列中的项若是,是第几项3( 2003 京春理 14,文 15)在某报自测健康状况的报道中,自测血压结果与相应年龄的统计数据如下表 观察表中数据的特点,用适当的数填入表中空白( )内。4、由前几项猜想通项:根据下面的图形及相应的点数,在空格及括号中分别填上适当的图形和数,写出点数的通项公式1) ( 4) ( 7)5.观察下列各图,并阅读下面的文字,像这样,10 条直线相交,交点的个数最多是(),其通项公式2 条 直 线 相 交,最多有 1 个交点 、等差数列3 条 直 线相 交,最多有 3 个交点个交点题型一 、等差数列定义:一般地,如果一个数列从第 2 项起,每一项与它的前一项的

3、差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母 d 表示。用递推公式表示为 an an 1 d(n 2) 或 an 1 an d(n 1)。aba , A, b成等差数列 A a b 即: 2an 1 an an 21( 14 全国 I)设 an 是公差为正数的等差数列, 若 a1 a2 a3A120 B105 C 902anan m an m )15 ,a1a2a3D 7580 ,则 a11 a12a132.设数列 an 是单调递增的等差数列,前三项的和为 12,前三项的积为48,则它的首项是(A1.2 C题型四 、等差数列的性质:1)在等差数列an中

4、,对任意 m , n N , an若 m,n, p,q从第 2 项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列;am (n m)d ,an am (m n) ; nm题型五 、等差数列的前 n 和的求和公式:SnN且q ,则 aman apaq;(Sn An2 Bn (A,B为常数 )递推公式: Sn (a1 an )n(am 1.如果等差数列中, a3a4 a5A)14B)212.2015 湖南卷文)设是等差数列的前A13B353.n(a1an)na1n(n 1) d12a1 d )n。是等差数列an (m 1) )n12,那么a1a2a7C)28D)352015 全

5、国卷理) 设等差数列的前n 项和,已知C49n 项和为,若3,a611,D则等于63S972,则 a2 a4 a9 =等差数列 an 2n 1,an an 1等差数列(通常可称为A P 数列)的单调性:d0为递增数列,0 为常数列,0 为递减数列。 1.已知等差数列中, a7a9 16, a41,则 a12 等于()A15 B30C31D 642.an 是首项 a1公差 d3的等差数列,如果 an 2005 ,则序号n 等于(A) 667(B)668(C)669(D) 6703.等差数列 an2n1,bn2n 1 ,则 an为bn为(填“递增数列”或“递减数列” )题型三 、等差中项的概念:题

6、型二 、等差数列的通项公式: an a1 (n 1)d ;定义:如果 a , A,b 成等差数列,那么A 叫做 a 与 b 的等差中项。其中 A4.(2015 重庆文)(2)在等差数列中, a1 a9 10 ,则的值为( )A)5B)6C)8D)105.若一个等差数列前 项3 项的和为 34 ,最后 3 项的和为项项146,且所有项的和为项390,则这个数列有(6.已知等差数列an 的前 n项和为 Sn ,若 S1221,则 a2 a5 a8 a117.(2014 全国卷理)设等差数列的前 n 项和为,若 a5 5a3则 9S58(2014 全国)已知数列 bn是等差数列, b1=1,b1+b

7、2+ +b10=100. ()求数列 bn的通项 bn;9.已知 an 数列是等差数列, a10 10,其前 10项的和 S10 70 ,则其公差 d等于( )2 1 1 2A B C. D.3 3 3 310.(2015陕西卷文)设等差数列的前 n项和为 ,若a6 s3 12,则11(2013 全国) 设 an为等差数列,Sn为数列 an的前 n项和,已知 S77,S1575,Tn为数列 Sn 的前 n 项和,求 Tn。12.等差数列 an 的前 n项和记为 Sn ,已知 a10 30,a20 50求通项 an ;若 Sn =242,求 n13.在等差数列 an 中,( 1)已知 S848,

8、 S12 168,求a1和d ;(2)已知 a6 10,S5 5,求a8和S8 ;(3)已 知 a3 a15 40,求 S17题型六 .对于一个等差数列:(1)若项数为偶数,设共有 2n项,则 S偶 S奇 nd; S奇 an ;S偶 an 1S奇 n(2)若项数为奇数,设共有 2n 1项,则 S奇 S偶 an a中; 奇 S偶 n 1题型七 .对与一个等差数列, Sn ,S2n Sn ,S3n S2n 仍成等差数列。 1.等差数列 an的前 m 项和为 30,前 2m 项和为 100 ,则它的前 3m 项和为( ) B.1702.一个等差数列前n 项的和为 48,前 2n 项的和为 60 ,则

9、前 3n 项的和为3已知等差数列an 的前 10 项和为 100,前 100 项和为 10 ,则前 110 项和为4.设Sn为等差数列 an 的前n项和, S4 14,S10 S730,则 S9 =5(2015全国 II)设 Sn是等差数列 an的前 n 项和,若 3 S613,则S63 1 1A B C10 3 8题型八 判断或证明一个数列是等差数列的方法:定义法:an 1 an d (常数)( n N )an 是等差数列中项法:2an 1 an an 2 ( n N )a 是等差数列通项公式法:an kn b (k,b为常数 )前 n 项和公式法:Sn An2 Bn ( A, B为常数 )

10、A.等差数列B.等比数列C.既不是等差数列也不是等比数列D.无法判断2.已知数列 an的通项为 an 2n 5,则数列 an 为 ( )3.已知一个数列an 的前 n项和sn 2n2 4,则数列 an 为(4.已知一个数列sn 2n2,则数列 an 为( )5.已知一个数列an 满足 an 22an 1 an 0,则数列 an 为( 1.已知数列 an满足an an1 2,则数列 an为 ( )6. 数列 an 满足 a1 =8, a4且 an 2 2an 10 ( n2,求数列 an 的通项公式;7(14天津理, 2)设 Sn是数列an的前 n 项和,且 Sn=n2,则an是( )A.等比数

11、列,但不是等差数列 B.等差数列,但不是等比数列C.等差数列,而且也是等比数列 D.既非等比数列又非等差数列题型九 .数列最值(1)a1 0,d 0时, Sn有最大值; a1 0,d 0时, Sn有最小值;(2) Sn 最值的求法: 若已知 Sn ,的最值可求二次函数 Sn an bn 的最值;an 0 或 an 0an 1 0 an 1 0项的和最大。可用二次函数最值的求法( n N ); 或者求出中的正、负分界项,即: 若已知 an ,则 Sn最值时 n 的值( n N )可如下确定 1等差数列 an 中, a1 0,S9 S12 ,则前2设等差数列 an 的前 n项和为 Sn ,已知 a

12、3 12,S12 0,S13 0 求出公差 d 的范围,指出 S1, S2, , S12 中哪一个值最大,并说明理由。3(12 上海)设 an(nN*)是等差数列, Sn 是其前 n 项的和,且 S5 S8,则下列结论错误 的是( ) S5 与 S7 均为 Sn的最大值4已知数列的通项n 98n 99N ),则数列 an 的前 30 项中最大项和最小项分别是5.已知 an 是等差数列,其中 a1 31,公差 d 8。1)数列 an 从哪一项开始小于 02)求数列 an 前 n项和的最大值,并求出对应 n的值6.已知an是各项不为零的等差数列, 其中 a1 0,公差d 0 ,若S10 0 ,求数

13、列 an前n项和的最大值7.在等差数列 an中, a1 25 , S17 S9,求 Sn的最大值题型十 .利用 an S1 ( n 1) 求通项n Sn Sn 1 (n 2)1.数列 an 的前 n 项和 Sn3)你能写出数列n2 1(1)试写出数列的前 5项;(2)数列 an 是等差数列吗( an 的通项公式吗2已知数列 an 的前 n 项和 Snn 2 4n 1,则3.设数列 an 的前 n 项和为 Sn=2n2,求数列 an 的通项公式;4.已知数列 a n 中, a1 3,前 n和 Sn (n 1)( a n 1) 1求证:数列 an 是等差数列求数列 an 的通项公式5.(2015

14、安徽文)设数列的前 n 项和 Sn n2 ,则的值为( )(A) 15 (B) 16 (C) 49 (D) 64等比数列等比数列定义一般地, 如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数 ,那么这个数列就叫做等比数 列,这个常数叫做等比数列的公比;公比通常用字母 q表示(q 0),即: an1:an q(q 0)。、递推关系与通项公式 递推关系: an 1 anq 通项公式: an a1 qn 1 推广: an am qn m1 在等比数列 an 中,a12 在等比数列 an 中,a73.( 2014 重庆文)在等比数列( A)2 (B) 34,q 2 ,则 an12,q 3

15、2 ,则a19 .an中,a28,a164,则公比 q 为( )( C) 4 ( D) 84.在等比数列 an 中, a22 , a5 54 ,则 a8 =5.在各项都为正数的等比数列an 中,首项 a1 3 ,前三项和为 21,则 a3 a4 a5 ( )A 33 B 7284D 189二、等比中项:若三个数 a, b, c成等比数列,则称 b 为 a与c的等比中项,且为 bac,注: b2 ac 是成等比数列的必要而不充分条件1.2 3 和2 3 的等比中项为(A)1(B) 1(C) 1(D)22.(2013 重庆卷文)设是公差不为0 的等差数列, a12且 a1,a3,a6成等比数列,

16、则的前 n项和=( )n2 7n442 n B5nn2 3n C24D n n三、等比数列的基本性质,1.(1) 若m n pq,则 amapaq (其中 m,n,p,q N )nm q n m, an an m an m (n N ) am为等比数列,则下标成等差数列的对应项成等比数列既是等差数列又是等比数列an 是各项不为零的常数列1在等比数列an 中,a1和 a10是方程 2x5x 1 0的两个根 ,则 a4 a7log2 a1(A) 52(B) 22(C)(D)122. 在等比数列3.在等比数列求 an若 Tn4.等比数列A12an ,已知an 中, a1lga1 lga25, a9a

17、1033, a3 a4lg an,求 Tn100 ,则 a18 =32, an an 1an 的各项为正数,且 a5a6 a4a7 18,则log 3 a1 log3 a2 LB10 C8 D 2+ log3 55.( 2014 广东卷理) 已知等比数 列满足log2 a3 Llog 2 a2n 10,n 1,2,L , 且 a5 a2nlog3 a10 ( )2 (n 3) , 则 当 时 ,A. n(2nB. (n 1)2C.D.(n 1)22.前 n 项和公式Sn a1(1 qn)1q(q 1) a1 anq 1.已知等比数列an 的首相2.已知等比数列(q5 ,公比 q,当项数 n 趋

18、近与无穷大时,其前 n 项则其前 n 项和 Sn和Sn3.设等比数列 an 的前 n 项和为Sn ,已 a26, 6a1 a3 30,求 an和 Sn4(2015 年北京卷)设 f(n) 2 24 27 210 L 23n 10(n N) ,则 f(n) 等于( )A 2 (8n 1) B 2 (8n 1 1) C 2 (8n 3 1) D2(8n4 1)7 7 7 75(2014 全国文, 21)设等比数列 an的前 n 项和为 Sn,若 S3S62S9,求数列的公比 q;6设等比数列 an 的公比为 q,前 n项和为 Sn,若 Sn+1,Sn,Sn+2成等差数列,则 q 的值为 .3.若数

19、列 an 是等比数列,Sn是其前 n 项的和, k N,那么 Sk , S2k Sk , S3kS2k 成等比数列 . 1.(2014 辽宁卷理)设等比数列 的前 n 项和为,S6 S9S3 =3 ,则 S6A. 2B.2.一个等比数列前A83Bn 项的和为 48 ,前 2n 项的和为108 C60,则前 3n 项的和为(75D633.已知数列 an是等比数列,且Sm 10, S2m30,则 S3m4.等比数列的判定法定义法: an 1q(常数)an 为等比数列;2)中项法: an 1 an an 2 (an 0) an 为等比数列;3)通项公式法: an k qn ( k , q为常数) a

20、n 为等比数列;4)前 n项和法: Sn k(1 qn )(k,q为常数) an 为等比数列。k kqn (k,q为常数) an 为等比数列。 1.已知数列 an 的通项为 an 2n,则数列 an 为 ( ) 满足 an 1 anan 2 (an 0) ,则数列 an 为 (sn 2 2n 1,则数列 an 为( )5.利用 an S1 (n 1) 求通项 1.( 2015 北京卷)数列 an的前 n 项和为 Sn,且 a1=1, an 1 Sn ,n=1,2,3,求 a2,a3,a4的值及数列 an的通项公式2.( 2015山东卷)已知数列 an 的首项 a1 5,前n项和为 Sn ,且S

21、n 1 Sn n 5(n N * ) ,证明数列 an 1 是等比数列四、求数列通项公式方法(1) 公式法(定义法)根据等差数列、等比数列的定义求通项 1已知等差数列 an满足: a3 7,a5 a7 26, 求an;2.已知数列 an满足a1 2,an an1 1(n 1) ,求数列 an的通项公式;3.数列 an 满足a1 =8, a4 2,且an 2 2an 1 an 0 (n N ),求数列 an 的通项公式;2 ,求数列 an 的通项公式;4.已知数列 an满足 a1 2,a n 15.设数列 an满足 a11 an 11 ,求 an 的通项公式1 an6.已知数列 an满足an 1

22、n ,a1 1,求数列 an 的通项公式。 an 2 17.等比数列 an 的各项均为正数,且 2a1 3a2 1, a32 9a2a6,求数列 an的通项公式8.已知数列 an满足 a12,an 3an 1(n 1) ,求数列 an 的通项公式;n N ),求数列 an 的通项公式;10.已知数列 an满足 a12,且an 1 5n 1 2(an 5n)(nN ),求数列 an 的通项公式;11.已知数列 an满足 a1n12,且an 1 5 2n 1 23(an 5 2n 2)( n12.数列已知数列 an 满足 a12,an4an 1 1(n1). 则数列 an 的通项公式 =9.已知数列 an满足a1 2,a2 4且an 2 an an12)累加法1、累加法 适用于: an 1 an f (n)f(1)若 an 1 an f (n) (na3f(2)2) ,则 3Lan 1f (n)两边分别相

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1