ImageVerifierCode 换一换
格式:DOCX , 页数:13 ,大小:365.09KB ,
资源ID:16770292      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/16770292.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(垂直轴风力发电机研究报告Word文档格式.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

垂直轴风力发电机研究报告Word文档格式.docx

1、图1 空气流的动能风功率计算公式为联立以上各式得 2.2 风能利用率Cp风能利用系数Cp是表示风力机效率的重要参数,由于风通过风轮的风能不能完全转化为风轮机械能,其风能利用率Cp为其中Pm为风力机输出的机械功率;Pw为风力机输入的风能。目前大多数垂直轴风机风能利用率能达到0.4左右。如按0.4的风能利用率来计算,风机功率为1000W,则风能为。根据上面公式可以求得,若满载额定风速为20m/s的话,S=0.5m2,显然设定的额定风速越低,S将越大。,S为扫风的截面积,r是翼片距轴的距离也是风轮的半径,L为翼片的高。如要达到1000W的风机功率,则扫风截面积不能小于0.5m2,则若r取0.25m的

2、话,L为1m。可以采用目前天津工厂顶部风机形状。风力机转矩:2.3 叶尖速比叶尖速比表示风轮在不同风速中的状态,用叶片的圆周速度和风速之比来衡量。式中:n风轮的转速,; 风轮角速度, R风轮半径,m。尖速比决定了风轮的功率,对于定桨距风轮,随风速的增加其转速也增加。在这种情况下,输出功率(同风速的立方成正比)也增加。但是输出功率增加并不意味着风能利用率也增加,一般而言,减速比和风能利用率曲线近似一条倒抛物线。根据叶尖转速比与Cp的关系及Cp与输出功率之间关系,我们可以知道在风速固定时,不同的转速即对应不同的叶尖转速比,也即对应不同的Cp值,也即对应不同的输出功率,这样如果设定不同的风速,就可以

3、得到风力机在不同风速下输出功率与转速的关系,如下图所示:图2 风轮转速与输出功率及风速曲线图从上图可以看出在某一种风速下,风力机的输出机械功率随转速的不同而变化,其中有一个最佳的转速。在该转速下,风力机输出最大的机械功率。它与风速的关系是最佳叶尖速比关系。在不同风速下均有一个最佳的转速使风力机输出最大机械功率。从而得到一条最大输出机械功率曲线,处于这条曲线上的任何点,其转速与风速的关系均为最佳叶尖速比关系。合理的选取最优尖速比可使风轮功率达到峰值。一般垂直轴风机叶尖速比选择在48之间,建议选择6,越低噪音低,但是功率也比较难做大。3 H型垂直轴风机翼片一般超过500W的垂直轴风机,都采用H型翼

4、片或型翼片。图3 H型垂直轴风机图4 型垂直轴3.1 翼片选型翼片是利用气流通过时产生的压力差使叶轮转动的部件,具有空气动力学特性,其设计质量对整个风力发电系统及其他零部件有这直接影响,因此翼片是风力机的重要部件。翼片的设计目标主要有:1. 良好的空气动力外形;2. 可靠地结构强度;3. 合理的翼片刚度;4. 良好的结构动力学特性和启动稳定性;5. 耐腐蚀、方便维修;6. 满足以上目标前提下,尽可能减轻翼片重量,降低成本。风力机的翼型多种多样,各有各的优缺点,应用较多的有NACA翼型系列、SERI翼型系列、NREL翼型系列、RIS翼型系列和FFA-W翼型系列等,其中NACA翼型是美国国家宇航局

5、(NASA)的前身国家航空咨询委员会(NACA)提出设计的翼型系列,具有低阻力系数的特点,适合低速运行。3.2 翼片实度风力机翼片的总面积与风通过风轮的面积(风轮扫掠面积)之比称为实度比(容积比),是风力机的一个参考数据。垂直轴风力机的翼片实度计算公式为:升力型垂直轴风力机叶轮,C为翼片弦长,N为翼片个数,R为风轮半径,L为翼片长度,为实度比。合理选取实度比的原则是在保证风轮气动特性的条件下,力求使制造翼片的费用最低。为了最大限度提高动效率,翼型特性应具有下列要求: 1. 升力系数斜度大;2. 阻力系数小;3. 阻力系数与零升角对称。根据一些资料描述,NACA0012的阻力系数较小,选用较低阻

6、力系数NACA0012对称翼型。由于NACA0012是对称翼型,在下图左侧数据表中仅列出了单边的数据,表中c是弦长(弦长为1.00);x是弦长坐标(单位是x/c);y是对应x位置的翼面与弦的距离(单位是y/c)。图5 NACA0012翼型参数实度比选择在0.50.6范围内较好。为此可以得出风轮翼片的弦长:可以采用的翼片弦长0.4m,数据只需将表中各数字适当缩放即可5。3.3 翼片形状及材料翼片截面结构为主梁蒙皮式,表面材料为铝合金,主梁采用单向承载能力强的硬铝材料,O型主梁结构制造简单,各向受力均衡。翼片空心处用聚氨酯泡沫材料填充,剖面形式如图所示。图6 翼片剖面主梁可直接焊接与铝合金蒙皮上,

7、待主梁与蒙皮连接完成后,在空腹结构内填入聚氨酯直接发泡填充成型。由此,风力机的基本参数可以确定,如表所示。表 风力机参数额定风速平均效率叶尖速比设计功率10m/s40%61000W4 电气设备及传动设计4.1 硅整流交流发电机硅整流交流发电机的结构硅整流交流发电机由一台三相同步交流发电机和硅二极管整流器组成。发电机工作时产生的三相交流电通过整流器进行三相桥式全波整流后转变为直流电。硅整流交流发电机是由转子、定子、整流器、端盖、风扇叶轮等组成。图7 硅整流交流发电机转子用来在发电机工作时建立磁场。它由压装在转子轴上的两块爪形磁极、两块磁极之间的励磁绕组和压装在转子轴上的两个滑环组成。两个滑环彼此

8、绝缘并与轴绝缘。励磁绕组的两端分别焊接在两个滑环上。定子用来在发电机工作时,与转子的磁场相互作用产生交流电压。它由内圆带槽的硅钢片叠成的铁心和对称地安装在铁心上的三相定子绕组组成。三相定子绕组按星形或按三角形接法连接。按星形接法连接时,三相绕组的首端分别与整流器的硅二极管相连,三相绕组的尾端连在一起作为发电机的中性点。按三角形接法连接时,将三相绕组中一相绕组的首端与另一相绕组的尾端相连,并将联接点接整流器的硅二极管。整流器是由6个硅二极管组成的三相桥式全波整流电路,在发动机工作时将三相定子绕组中产生的交流电转变为直流电。在负极搭铁的发电机中,3个二极管的壳体为负极,压装在与发电机机体绝缘的元件

9、板上,并与发电机的输出端(正极)相连,其引线为二极管的正极,称为正极二极管;另外3个二极管的壳体为正极,压装在不与机体绝缘的元件板上,或直接压装在电刷端盖上,作为发电机的负极,其引线为负极,称为负极二极管。驱动端盖和电刷端盖作为发电机的前后支撑。电刷端盖上装有电刷架和两个彼此绝缘的电刷,并通过电刷弹簧,使电刷与转子轴上的两个滑环保持接触,电刷的引线分别与电刷端盖上的两个磁场接线柱相连(外搭铁式交流发电机),或一个与磁场接线柱相连,另一个在发电机内部搭铁(内搭铁式交流发电机)。发电机的整流器总成也安装在驱动端盖上,以有利于检修。独立运行的小型风电机组的风力机叶片多数是固定桨距的,当风力变化时风机

10、转速随之变化,与风机相连的发电机的转速也随之变化,因而发电机的出口电压也会产生波动,这将导致硅整流器输出的直流电压及发电机励磁电流的变化,并造成励磁磁场的变化,这样又造成发电机出口电压的波动。这种连锁反应是的发电机的出口电压的波动范围不断增加。显而易见,如果电压的波动得不到控制,在向负载供电的情况下,将会影响供电质量,甚至损坏用电设备。此外独立运行的风力发电系统都带有储能电池组,电压的波动会导致电池组的过充电,从而降低电池组的使用寿命。在工作过程中,发电机转速是不断变化的,要使发电机端电压保持不变,可以通过改变磁通的大小来进行调节,而磁通的大小是由励磁电流决定的。因此,当发电机转速增高时,可以

11、减小励磁电流使磁通减小,保持发电机的输出电压不变;反之,当发电机转速降低时,增大励磁电流。因此电压调节器的作用就是在发电机转速变化时,自动改变励磁电流的大小,使发电机输出电压保持不变。所以可以在发电机励磁回路中串联励磁调节器,实质是串入可切换电阻,改吧了励磁回路的阻抗特性,进而改变了励磁电流的大小。4.2 电气系统电路设计如图所示,励磁调节器由电压继电器V1、电流继电器I1、逆流继电器I2及其所控制的动断触电V1、I1和动合触电I2以及电阻R2等组成。图8 发电机励磁图励磁调节器的作用是使发电机能自动调节其励磁电流(即励磁磁通)的大小,来抵消因风速变化而导致的发电机转速变化对发电机端电压的影响

12、。当发电机转速较低,发电机端电压低于额定值时,电压继电器V1不动作,其动断触点V1闭合,硅整流器输出端电压直接施加在励磁绕组上,发电机属于正常励磁状态;当风速加大,发电机转速增高,发电机端电压高于额定电压时,动断触电V1断开,励磁回路中被串入了电阻R2,励磁电流及磁通随之减小,发电机输出端电压随之下降;当发电机电压降至额定值时,触点V1重新闭合,发电机恢复到正常励磁状态。电压继电器工作时发电机端电压与发电机转速的关系如图所示。图9 发电机端电压与发电机转速的关系风力发电机组运行时,当用户投入的负载过多时,可能出现负载电流过大超过额定值的状况,如果不加以控制,使发电机过负荷运行,会对发电机的使用

13、寿命有较大的影响,甚至损坏发电机的定子绕组。电流继电器的作用是为了抑制发电机过负荷运行。电流继电器I1的动断触点I1串接在发电机的励磁回路中,发电机输出的负荷电流则通过电流继电器的绕组;当发电机的输出电流低于额定值时,继电器不工作,动断触点I1闭合,发电机属于正常励磁状态;当发电机输出电流高于额定值时,动断触点I1断开,电阻R2被串入励磁回路,励磁电流减小,从而降低了发电机输出端的电压,并减小了负载电流。电流继电器工作时,发电机负载电流与发电机转速的关系如图所示。图10 发电机负载电流与发电机转速的关系为了防止无风或风速太低时,储能电池组向发电机励磁绕组送电,及储能电池组由充电运行变为反向放电

14、状态,这不仅会消耗储能电池组所储电能,还可能烧毁励磁绕组,因此在励磁调节器装置内,还装有逆流继电器I2。发电机正常工作时,逆流继电器的电压线圈及电流线圈内流过的电流产生的吸力是动合触点I2闭合;当风速太低,发电机端电压低于储能电池组电压时,继电器电流线圈瞬间流过反向电流,此电流产生的磁场与电压线圈内流过的电流产生的磁场作用相反,而电压线圈内流过的电流由于发电机电压下降也减小了,由其产生的磁场也减弱了,故由电压线圈及电流线圈内电流所产生的总磁场的吸力减弱,是的动合触点I2断开,从而断开了储能电池想发电机励磁绕组送电的回路。采用励磁调节器的硅整流交流发电机,与永磁发电机比较,其特点是能随风速变化自

15、动调节输出端电压,防止产生对储能电池组过充电,延长储能电池组的使用寿命;同时还实现了对发电机的过负荷保护,但由于励磁调节器的动断、动合触点动作频繁,需对出头材质及断弧性能做适当的处理(可采用电子开关进行开关动作,并联多组带电子开关的电阻相当于多极调节)。而且用该交流发电机进行发电时,发电机的转速必须达到在该转速下的电压时才能对储能电池组充电。5 传动系统结构设计及计算5.1 传动轴的设计主传动轴只承受扭矩,基本不受弯矩,按空心主轴扭转强度估算主轴最小直径: 其中A为系数,按机械设计手册单行本-轴承及其连接表5-1-19选取;d为轴端直径,mm;n为轴的工作转速,r/min;P为轴传递的功率,k

16、W;为空心轴的内径d1与外径d的比值,=d1/d。 按照主轴扭转刚度计算直径: 其中B为系数,按机械设计手册单行本-轴承及其连接表5-1-20选取。如果截面上有键槽时,应将求得的轴径增大,其增大值见机械设计手册单行本轴-承及其连接表5-1-22。图11 主轴示意图校核主轴安全系数。主轴最大转矩为最大风速下承受转矩:只考虑扭拒作用时的安全系数为 其中为对称循环应力下的材料扭转疲劳极限,Mpa,见机械设计手册单行本轴-承及其连接表5-1-1,为扭转时的有效应力集中系数,见机械设计手册单行本轴-承及其连接表5-1-30表5-1-32,为表面质量系数,一般用机械设计手册单行本轴-承及其连接表5-1-3

17、6;轴表面强化处理后用机械设计手册单行本轴-承及其连接表5-1-38;有腐蚀情况时用机械设计手册单行本轴-承及其连接表5-1-35或机械设计手册单行本轴-承及其连接表5-1-37,为扭转时的尺寸影响系数,见机械设计手册单行本轴-承及其连接表5-1-34,、为扭转应力的应力幅和平均应力,Mpa见机械设计手册单行本轴-承及其连接表5-1-25,为材料扭转的平均盈利折算系数,见机械设计手册单行本轴-承及其连接表5-1-33,代入上式,可求得安全系数,然后根据钢材的材质标号,查表看安全系数是否满足,不满足就再增加主轴直径。5.2 轴承的计算及选型由于风力机不仅承受风轮的扭矩,而且要承受气流方向的一定弯

18、矩,角接触球轴承不仅能够承径向力,同时能够承受一定的径向载荷,因此在主轴上安装两个角接触球轴承。5.2.1 角接触球轴承1的选用计算角接触球轴承1的安装位置如图所示。图12 轴承1的安装位置轴径d=30mm,额定转矩T=4.3Nm。由机械设计手册单行本-轴承表6-2-82可选择角接触球轴承。轴向载荷:径向载荷按照最不利状况计算,根据伯努利方程,气流作用在叶片上的压强为:作用在叶片上的总力为由机械设计手册单行本-轴承表6-2-12推荐使用寿命为100000小时, 轴承当量动载荷的计算公式为 式中X、Y分别为径向动载荷系数及轴向动载荷系数。可通过查机械设计手册表283-2得到,然后计算载荷P。轴承

19、基本额定动载荷按如下公式计算: 式中:为基本额定动载荷计算值,N;为速度因数,按机械设计手册单行本-轴承表6-2-9选取;为力矩载荷因数,力矩载荷较小时取1.5,较大时取2,这里选取2;为冲击载荷因数,按机械设计手册单行本-轴承表6-2-10选取;为温度因数,按机械设计手册单行本-轴承表6-2-11选取1;为寿命因数,按机械设计手册单行本-轴承表6-2-8选取0.405;为当量动载荷。将各个数据代入上式得C值,与手册里标称相应型号轴承的Cr值比较,小于Cr即可。5.2.2 角接触球轴承2的选用计算角接触球轴承2的安装位置如图所示。图13 轴承2安装位置 按照机械设计手册单行本-轴承表6-2-82选择轴承型号按照轴承1校核公式对轴承进行校核。 由机械设计基础(第五版)公式16-3计算轴承寿命:为冲击载荷因数,按机械设计手册单行本-轴承表6-2-10选取1.2;C为额定动载荷;N为主轴额定转速,r/min;为寿命指数,对于球轴承取3。将各数据代入式子后得轴承寿命小时。由机械设计手册单行本-轴承表6-2-12推荐使用寿命为100000小时。主轴与发电机之间用圆锥销套筒联轴器进行连接,如图所示,联轴器具体参数见图纸。图14 圆锥销套筒联轴器

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1