ImageVerifierCode 换一换
格式:DOCX , 页数:15 ,大小:335.49KB ,
资源ID:16739088      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/16739088.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(LVDSCMLLVPECLVML之间接口电平转换Word格式文档下载.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

LVDSCMLLVPECLVML之间接口电平转换Word格式文档下载.docx

1、2.不同信号电平的转换3.不同地之间的转换2各信号电平第一步首先是理解各个接口点逻辑电平,主要讨论 LVPECL,CML,VML,以及LVDS。表一为这些接口的输岀电平。项目LVPECLCMLVMLLVDSVOH2.4V1.9V1.65V1.4VVOL1.6V1.1V0.85V1V输出电压(单800mV400mV端)共模电压2V1.5V1.25V1.2V(VCC-0.2V3输入输出结构在上文中提到了关于 LVPECL,CML,VML以及LVDS驱动器,这些都是基于 CMOS技术的。这个部分 介绍各个种类的输入输岀结果。I/Figure 2. lypieal Structure fdr An L

2、VPECL OutputInput*Inpvt- 、Currtnt Sowct4 Vec-2 vOutput *OUlpUt-Curont Sure3.2CML接口结构CML电路驱动器有这样几个特点,包括高速能力,可调整逻辑输出摆幅,电平调整,可调 slew rate.3.2.1CML输出结构CML驱动器基于开漏输出和压控电流源使用 NMOS晶体管。输出需要通过电阻上拉至 VDD,这是因为NMOS只能驱动下降沿。因为输出电压摆幅是由负载决定,压控电流源用于改变电流值从而驱动负载。负 载电阻和外部参考电阻可以靠近放置以优化输岀电压摆幅。( 这里说的比较简单,从其他的文献上查得的资料,上拉电阻一般

3、选用 50欧姆,电流源的电流为 16mA,这样就会有差分 800mV的电压摆幅)Output + | Output-NMgVoluge Ccntrlted CurTvn: Source三 GN DAFigure 4* Typical Structure for a CML Output Stae3.2.2CML输入结构输入部分需要有上拉电阻将共模电压拉至正常的值。在这里为 1.5V当上拉电阻没有包含在芯片中时,就需要特别小心这部分的电路设计。 上拉电阻要尽可能的靠近器件。 NMOS晶体管在这里作为一个latch (锁存器),配合一个高速时钟,用来锁存数据。( 这里好像是针对 TI的某个器件来说

4、的,和典型的 CML电路有些不同。)Input-GNDAFigure 5. Input Stage for Devices Requiring CML Signaling Levels3.3VML接口结构德州仪器公司的 voltage-mode logic (VML )电平与LVPECL 兼容。和 CML 样,VML基于CMOS 工艺,但VML不需要上拉电阻,以为其内部使用了 NMOS与PMOS用以驱动上升沿和下降沿。该电平使用不多,所以不详细论述了。3.4LVDS 接口结构ANSI TIA/EIA-644 和IEEE1596.3-1996 定义了 LVDS接口标准。LVDS的电压摆幅和速度低

5、于 LVPECL CML和VML,然而LVDS也有其优势,即更低的功耗。许多 LVDS驱动器基于恒定电流所以功耗与传输频率并不匹配。(这句话没明白)3.4.1LVDS输出结构LVDS输出结构与VML类似,只是TI的LVDS SERDES输出结构使用了反馈回路来调整共模电压值。如图8所示,一个电流源与 NMOS的漏极链接用来控制输出电流,典型值为 3.5mA,通过终端的100欧姆匹配电阻,得到350mA的电压摆幅。AVCCCurrent Source *3.5 mA (Figure & Typical Structure for an LVDS Output Stage3.4.2 LVDS输入结

6、构TI的基于LVDS的SERDES芯片使用差分信号,使用 NMOS晶体管,输入必须使用 100欧姆的终端电 阻跨接于两个差分电平。并且共模电平约为 1.2V。匹配电阻必须尽量靠近接收端摆放。电流源用来给差分线提供小电流。tips :1、按照标准,CML的共模电压为 VCC-0.2V,这个计算是基于电流源电流为 16mA,上拉电阻值为50欧姆。为什么Ti这个表格里的这个共模电压是 1.5V ?这里需要再查阅一些文献看。4各个端口的连接直流耦合用于当共模电压不造成问题,且为了避免电容造成的阻抗不连续。交流耦合用于消除共模电压,主要用于不同的逻辑电平,并假定一个直流平衡的信号模式。9b6 漀LVPE

7、CLLVPECL驱动器一一直流耦合直流耦合时,LVPECL需要VCC-2V的终端。当VCC为3.3V时,该电压为1.3V。终端电阻Rt必须和传 输阻抗Z0相同。Figure 10, LVPECL Driver for DC-CvpingLVPECL驱动器一一交流耦合在交流耦合的情况下,由于没有直流路径供给下降沿信号,所以LVPECL驱动器输岀需要通过一个电阻连接至地,这个电阻的大型约在 140220欧姆。在接收端,终端电平必须为 VCC-1.3V ( 5V为3.7V , 3.3V为2V)Figure 1L LVPECL Driver for ACouplingRt与Z0 一致。9b6 漀CML

8、CML的直流耦合CML的匹配只要加上一个上拉(芯片内未射开漏上拉),上拉电阻等于传输线阻抗 Z0。如果芯片内都有上拉,则直接连接即可。CML的交流耦合在AC耦合时,需要上拉电阻提供上升沿电平。因为LVDS是电流驱动器,所以只能通过 DC耦合,电流通过跨接的终端电阻转化为电压信号。典型的来说,差分匹配电阻 Rt为100欧姆,但是这个还要根据传输阻抗 Z0。(在PCB上Z0 一般为50欧姆)5偏置和终端电路5.1偏置最简单的偏置电压使用分压电阻网络即可Figure 18. Simple Resistor Network for Biasing Voltages举个LVPECL的例子(原文是 VML

9、的例子)。3.3V的LVPECL的偏置电压为2V,所以:3.3*(R2/(R1+R2)=2可以根据这个算式,算出 R1与R2的关系,R1=0.65R25.2终端匹配对于差分电路,有四种典型的终端和偏置方式,他们有各自的优缺点。5.2.1差分匹配这是最简单的一种,R1和R2用以分压,他们的值在 k级别,使得输入共模电平在接收端允许的范围Figure 20. Differential Termination With Biasing该方式的主要的缺点是元器件的数量以及电源的消耗通过分压网络。然而,这种方式可以通过选择更大阻 值的R1,R2来降低功耗。5.2.2带有去耦电容的差分匹配第二种方法是和第

10、一种很相似,但终端匹配电阻采用 50欧姆,且两个匹配电阻间通过一个去耦电容接地。Figure 21. Differential Termination Biasmg and Decouphrg Capacitor这种差分匹配,主要的缺点在于元器件数量和电源消耗;然而,电源消耗可以通过调整 R1,R2的值。优点在于,当岀现传输线造成的信号歪斜时,比如差分信号并不是同时到达时,该电容可以成为一个对小信号 的低阻对地路径。523简化电路第三种方法如下图22.理想的配置是使得R1|R2等于Z0。同时满足电阻分压 可以继续举LVPECL的例子。算得R1|R2 = 50又根据上文的关系,可得, R仁82

11、, R2=130显然,在这个例子里,有更少的 R1和R2,但是由于R1和R2的电阻较小,所以功耗比较大524带一个偏置电阻网络的差分匹配最后一种方式将偏置网络合并为一个,如图 24.Figure 24. Differential rermination With One Biasing Network这是一个非常简洁的电路,易于只存在一个分压网络用于两个差分线,减少了电源消耗。去耦电容和匹配 电阻消减了电路噪声,和信号歪斜。当芯片不存在内部的偏置电路时,这种方法是最好的终端和偏置电路之一。R1和R2在k级的电阻中选,Z0等于传输阻抗。这种配置时,匹配电阻靠近芯片摆放,偏置电路远离该部分。去耦电

12、容同样必须靠近芯片摆放。加个补充,来源于网上,提到 CML和LVDS的速度问题。1、 CML和(P)ECL他们的Driver不是工作在开关状态(饱和、截至),而是工作在临界状态,因此他们右low到high的切换过程是很迅速的, 同时也正是因为其工作在临界状态, 它的静态损耗比LVDS要大,说白了也就是发热大。2、 swing大小的问题,其实这个主要是针对接受器来说,当 receiver的容限变大的时候,其允许的传输速度也将会更大。一个很好的例子就是 SATA 1.0和PCIE 1.0,其PHY的Driver部分是相类似的,不过PCIE定义的接受电平为 85mV (但愿我没记错)而 SATA的接收电平为250mV,这样在传输时,PCIE 允许的传输速度就大于 SATA。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1