1、b=3:4,则ab= 11如图,在高2米,坡角为30的楼梯表面铺地毯,地毯的长至少需 米12如图,OAB=OBC=OCD=90,AB=BC=CD=1,OA=2,则OD2= 13如图在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个三角形中,与众不同的是,不同之处: 三、解答题15如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形(涂上阴影)(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2,图3中,分别画一个直角三角形,使它的三边长都是无理数(两个三角形不全等)16如图,在ABD中,A是直角,AB=3,
2、AD=4,BC=12,DC=13,求四边形ABCD的面积17如图所示,折叠长方形的一边AD,使点D落在边BC的点F处,已知AB=8cm,BC=10cm,则EC的长为cm18如果ABC的三边长分别为a、b、c,并且满足a2+b2+c2+338=10a+24b+26c,试判断ABC的形状19,学校科技小组研制了一套信号发射、接收系统.在对系统进行测试中,如图10,小明从路口A处出发,沿东南方向笔直公路行进,并发射信号,小华同时从A处出发,沿西南方向笔直公路行进,并接收信号.若小明步行速度为39米分,小华步行速度为52米分,恰好在出发后30分时信号开始不清晰.(1)你能求出他们研制的信号收发系统的信
3、号传送半径吗?(以信号清晰为界限)(2)通过计算,你能找到题中数据与勾股数3、4、5的联系吗?试从中寻找求解决问题的简便算法.第17章 勾股定理参考答案与试题解析【考点】勾股数【分析】勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数,据此求解即可【解答】解:A、62+7282,不能构成勾股数,故错误;B、212+282=352,能构成勾股数,故正确;C、1.5和2.5不是整数,所以不能构成勾股数,故错误;D、52+82132,不能构成勾股数,故错误故选B【点评】此题主要考查了勾股数的定义,及勾股定理的逆定理:已知ABC的三边满足a2+b2=c2,则ABC是直角三角形【考点】勾股定理【
4、分析】设另一条直角边是a,斜边是c根据另一条直角边与斜边长的和是49cm,以及勾股定理就可以列出方程组,即可求解设另一条直角边是a,斜边是c根据题意,得,联立解方程组,得故选D【点评】注意根据已知条件结合勾股定理列方程求解解方程组的方法可以把方程代入方程得到ca=1,再联立解方程组【分析】先画图,再根据勾股定理易求BC2+AC2的值,再加上AB2即可如右图所示,在RtABC中,BC2+AC2=AB2,AB=5,BC2+AC2=25,AB2+AC2+BC2=25+25=50故选D【点评】本题考查了勾股定理,解题的关键是找准直角边和斜边【专题】分类讨论【分析】根据勾股定理先求出BD、CD的长,再求
5、BC就很容易了此图中有两个直角三角形,利用勾股定理可得:CD2=152122=81,CD=9,同理得BD2=132122=25BD=5BC=14,此图还有另一种画法即当是此种情况时,BC=95=4【点评】此题主要考查了直角三角形中勾股定理的应用即直角三角形两直角边的平方和等于斜边的平方【考点】勾股定理;等腰三角形的性质【分析】根据题意画出图形,进而利用勾股定理得出DC的长,进而求出BC的长,即可得出答案过点A做ADBC于点D,等腰三角形底边上的高为8,周长为32,AD=8,设DC=BD=x,则AB=(322x)=16x,AC2=AD2+DC2,即(16x)2=82+x2,解得:x=6,故BC=
6、12,则ABC的面积为:ADBC=812=48故选:B【点评】此题主要考查了勾股定理以及等腰三角形的性质,得出DC的长是解题关键【专题】计算题【分析】设另一条直角边为x,斜边为y,由勾股定理得出y2x2=112,推出(y+x)(yx)=121,根据121=1111=1211,推出x+y=121,yx=1,求出x、y的值,即可求出答案设另一条直角边为x,斜边为y,由勾股定理得:y2x2=112,(y+x)(yx)=121=111,x、y为整数,yx,x+yyx,即只能x+y=121,yx=1,x=60,y=61,三角形的周长是11+60+61=132,故选C【点评】本题考查了勾股定理的应用,关键
7、是得出x+y=121和yx=1,题目比较好,但有一定的难度【考点】解直角三角形的应用【专题】压轴题【分析】求出三角形地的面积即可求解如图所示,作BDCA于D点在RtABD中,利用正弦函数定义求BD,即ABC的高运用三角形面积公式计算面积求解如图所示,作BDCA于D点BAC=150,DAB=30AB=20米,BD=20sin30=10米,SABC=3010=150(米2)已知这种草皮每平方米a元,所以一共需要150a元【点评】本题考查了通过作辅助线构建直角三角形,从而解斜三角形的能力【考点】平面展开最短路径问题【分析】根据两点之间,线段最短首先把A和B展开到一个平面内,即展开圆柱的半个侧面,得到
8、一个矩形,然后根据勾股定理,求得蚂蚁爬行的最短路程即展开矩形的对角线的长度展开圆柱的半个侧面,得到一个矩形:矩形的长是圆柱底面周长的一半即2=6,矩形的宽是圆柱的高即8根据勾股定理得:蚂蚁爬行的最短路程即展开矩形的对角线长即10故选A【点评】本题考查了勾股定理的拓展应用“化曲面为平面”是解决“怎样爬行最近”这类问题的关键本题注意只需展开圆柱的半个侧面14在直线l上依次摆放着七个正方形(如图所示)已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=4全等三角形的判定与性质【专题】规律型【分析】运用勾股定理可知,每两个相邻的
9、正方形面积和都等于中间斜放的正方形面积,据此即可解答【解答】解:观察发现,AB=BE,ACB=BDE=90ABC+BAC=90,ABC+EBD=90BAC=EBD,ABCBDE(AAS),BC=ED,AB2=AC2+BC2,AB2=AC2+ED2=S1+S2,即S1+S2=1,同理S3+S4=3则S1+S2+S3+S4=1+3=4故答案为:4【点评】运用了全等三角形的判定以及性质、勾股定理注意发现两个小正方形的面积和正好是之间的正方形的面积,AC=3,BC=4,则AB=5【分析】根据勾股定理直接解答即可因为在RtABC中,AB2=AC2+BC2,即AB=5【点评】本题考查了勾股定理解及直角三角
10、形的能力4,则ab=48【分析】首先根据勾股定理以及a:4,知斜边占5份又c=10,所以一份是2,则a=6,b=8所以ab=48设a=3x,b=4x,则c=5x,又c=10,所以x=2,即a=6,b=8,所以ab=4848【点评】熟练运用勾股定理,此类题首先计算一份的值,再进一步进行计算的楼梯表面铺地毯,地毯的长至少需2+2米【考点】勾股定理的应用【分析】地毯水平的部分的和是水平边的和,竖直的部分的和是竖直边,因此根据勾股定理求出直角三角形两直角边即可已知直角三角形的高是2米,根据三角函数得到:水平的直角边是=2,则地毯水平的部分的和是水平边的和,竖直的部分的和是竖直边,则地毯的长是(2+2)
11、米【点评】正确计算地毯的长度是解决本题的关键,AB=BC=CD=1,OA=2,则OD2=7【分析】连续运用勾股定理即可解答由勾股定理可知OB=,OC=,OD=OD2=7【点评】本题考查了利用勾股定理解直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方13如图在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个三角形中,与众不同的是A,不同之处:A不是直角三角形,B,C,D是直角三角形【专题】网格型【分析】可以设正方形小格的边长是1根据勾股定理计算各个三角形的三边,看三边的平方是否满足两条较短边的平方和等于最长边的平方(1)在A图中三角形的三个边的长为、,由勾股定
12、理的逆定理可知5+1017,故A不是直角三角形;(2)在B图中三角形的三个边的长为2,4,由勾股定理的逆定理可知22+42=()2,所以B是直角三角形;(3)根据(2)的计算方法,同理可求得C,D也是直角三角形【点评】综合运用了勾股定理及其逆定理【考点】作图应用与设计作图【专题】网格型;开放型【分析】(1)画一个边长3,4,5的三角形即可;(2)利用勾股定理,找长为无理数的线段,画三角形即可【点评】本题需仔细分析题意,结合图形,利用勾股定理即可解决问题【考点】勾股定理的逆定理【专题】几何图形问题【分析】连接BD,根据勾股定理的逆定理,判断出ABD和DBC是直角三角形,然后根据三角形面积公式求出
13、两个三角形的面积,将其相加即可得到四边形ABCD的面积连接BD,在ABD中,A是直角,AB=3,AD=4,BD=5,BCD中,BC=12,DC=13,DB=5,52+122=132,即BC2+BD2=DC2,BCD是直角三角形,S四边形ABCD=SABD+SBDCADAB+BDBC43+512=6+30=36【点评】此题要将求四边形面积的问题转化为求两个直角三角形面积和的问题,既考查了对勾股定理逆定理的掌握情况,又体现了转化思想在解题时的应用17如图所示,折叠长方形的一边AD,使点D落在边BC的点F处,已知AB=8cm,BC=10cm,则EC的长为3cm翻折变换(折叠问题)【分析】能够根据轴对
14、称的性质得到相关的线段之间的关系再根据勾股定理进行计算D,F关于AE对称,所以AED和AEF全等,AF=AD=BC=10,DE=EF,设EC=x,则DE=8xEF=8x,在RtABF中,BF=6,FC=BCBF=4在RtCEF中,由勾股定理得:CE2+FC2=EF2,即:x2+42=(8x)2,解得x=3EC的长为3cm【点评】特别注意轴对称的性质以及熟练运用勾股定理【考点】勾股定理的逆定理;非负数的性质:偶次方;完全平方公式【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可如果有这种关系,这个就是直角三角形把a2+b2+c2+338=10a+
15、24b+26c化简后判断则可a2+b2+c2+338=10a+24b+26ca210a+25+b224b+144+c226c+169=0即(a5)2+(b12)2+(c13)2=0a5=0,b12=0,c13=0a=5,b=12,c=1352+122=169=132a2+b2=c2ABC是直角三角形【点评】本题考查了式子的变形和因式分解,然后再根据勾股定理的逆定理判断三角形的形状19,(1)利用勾股定理求出半径为1950米;(2)小明所走的路程为393031330,小华所走的路程为5230430,根据前面的探索,可知勾股数3、4、5的倍数仍能构成一组勾股数,故所求半径为530=1950(米).
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1