ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:175.25KB ,
资源ID:16701072      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/16701072.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(五力系的等效与简化文档格式.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

五力系的等效与简化文档格式.docx

1、当一个力与一个力系等效时,则称该力为力系的合力;而该力系中的每一个力称为其合力的分力。把力系中的各个分力代换成合力的过程,称为力系的合成;反过来,把合力代换成若干分力的过程,称为力的分解。平衡力系:若刚体在某力系作用下保持平衡。在平衡力系中,各力相互平衡,或者说,诸力对刚体产生的运动效应相互抵消。可见,平衡力系是对刚体作用效应等于零的力系。第一节 静力学基本公理静力学公理是人们从实践中总结得出的最基本的力学规律,这些规律的正确性已为实践反复证明,是符合客观实际的。一、 二力平衡公理作用于刚体上的两个力平衡的充分与必要条件是这两个力大小相等、方向相反、作用线相同。这一结论是显而易见的。如图所示直

2、杆,在杆的两端施加一对大小相等的拉力(F1、F2)或压力(F2、F1),均可使杆平衡。图2-1应当指出,该条件对于刚体来说是充分而且必要的;而对于变形体,该条件只是必要的而不充分。如柔索当受到两个等值、反向、共线的压力作用时就不能平衡。在两个力作用下处于平衡的物体称为二力体;若为杆件,则称为二力杆。根据二力平衡公理可知,作用在二力体上的两个力,它们必通过两个力作用点的连线(与杆件的形状无关)且等值、反向。二、 加减平衡力系公理 在作用于刚体上的已知力系上,加上或减去任意平衡力系,不会改变原力系对刚体的作用效应。这是因为平衡力系中,诸力对刚体的作用效应相互抵消,力系对刚体的效应等于零。根据这个原

3、理,可以进行力系的等效变换。推论1 力的可传性原理作用于刚体上某点的力,可沿其作用线任意移动作用点而不改变该力对刚体的作用效应。利用加减平衡力系公理,很容易证明力的可传性原理。设力F作用于刚体上的A点。现在其作用线上的任意一点B加上一对平衡力系F1、F2,并且使F1= F2=F,根据加减平衡力系公理可知,这样做不会改变原力F对刚体的作用效应,再根据二力平衡条件可知,F2和F亦为平衡力系,可以撤去。所以,剩下的力F1与原力F等效。力F1即可看成为力F沿其作用线由A点移至B点的结果。同样必须指出,力的可传性原理也只适用于刚体而不适用于变形体。三、 力的平行四边形法则作用于物体同一点的两个力,可以合

4、成为一个合力,合力也作用于该点,其大小和方向由以两个分力为邻边的平行四边形的对角线表示,即合力矢等于这两个分力矢的矢量和。其矢量表达式为FR= F1 + F2 (11)在求两共点力的合力时,为了作图方便,只需画出平行四边形的一半,即三角形便可。其方法是自任意点O开始,先画出一矢量F1,然后再由F1的终点画另一矢量F2,最后由O点至力矢F2的终点作一矢量FR,它就代表F1、F2的合力矢。合力的作用点仍为F1、F2的汇交点A。这种作图法称为力的三角形法则。显然,若改变F1、F2的顺序,其结果不变。利用力的平行四边形法则,也可以把作用在物体上的一个力,分解为相交的两个分力,分力与合力作用于同一点。实

5、际计算中,常把一个力分解为方向已知的两个(平面)或三个(空间)分力,如图17即为把一个任意力分解为方向已知且相互垂直的两个(平面)或三个(空间)分力。这种分解称为正交分解,所得的分力称为正交分力。图17四、 三力平衡汇交定理作用于刚体上平衡的三个力,如果其中两个力的作用线交于一点,则第三个力必与前面两个力共面,且作用线通过此交点,构成平面汇交力系。这是物体上作用的三个不平行力相互平衡的必要条件。应当指出,三力平衡汇交公理只说明了不平行的三力平衡的必要条件,而不是充分条件。它常用来确定刚体在不平行三力作用下平衡时,其中某一未知力的作用线。五、 作用力与反作用力公理两个物体间相互作用的一对力,总是

6、大小相等、方向相反、作用线相同,并分别而且同时作用于这两个物体上。这个公理概括了任何两个物体间相互作用的关系。有作用力,必定有反作用力;反过来,没有反作用力,也就没有作用力。两者总是同时存在,又同时消失。因此,力总是成对地出现在两相互作用的物体上的。要区别二力平衡公理和作用力与反作用力公理之间的关系,前者是对一个物体而言,而后者则是对物体之间而言。第一节 平面汇交力系合成平面汇交力系的合成方法可以分为几何法与解析法,其中几何法是应用力的平行四边形法则(或力的三角形法则),用几何作图的方法,研究力系中各分力与合力的关系,从而求力系的合力;而解析法则是用列方程的方法,研究力系中各分力与合力的关系,

7、然后求力系的合力。下面分别介绍。一、 几何法首先回顾用几何法合成两个汇交力。如图21a,设在物体上作用有汇交于点的两个力F1和F2,根据力的平行四边形法则,可知合力R的大小和方向是以两力F1和F2为邻边的平行四边形的对角线来表示,合力R的作用点就是这两个力的汇交点。也可以取平行四边形的一半即利用力的三角形法则求合力如图21b所示。图21对于由多个力组成的平面汇交力系,可以连续应用力的三角形法则进行力的合成。设作用于物体上点的力F1、F2、F3、F4组成平面汇交力系,现求其合力,如图22a所示。应用力的三角形法则,首先将F1与F2合成得R1,然后把R1与F3合成得R2,最后将R2与F4合成得R,

8、力R就是原汇交力系F1、F2、F3、F4的合力,图22b所示即是此汇交力系合成的几何示意,矢量关系的数学表达式为 R=F1F2F3F4 (21)实际作图时,可以不必画出图中虚线所示的中间合力R1和R2,只要按照一定的比例尺将表达各力矢的有向线段首尾相接,形成一个不封闭的多边形,如图22c所示。然后再画一条从起点指向终点的矢量R,即为原汇交力系的合力,如图22d所示。把由各分力和合力构成的多边形abcde称为力多边形,合力矢是力多边形的封闭边。按照与各分力同样的比例,封闭边的长度表示合力的大小,合力的方位与封闭边的方位一致,指向则由力多边形的起点至终点,合力的作用线通过汇交点。这种求合力矢的几何

9、作图法称为力多边形法则。从图22e还可以看出,改变各分力矢相连的先后顺序,只会影响力多边形的形状,但不会影响合成的最后结果。图22将这一作法推广到由n个力组成的平面汇交力系,可得结论:平面汇交力系合成的最终结果是一个合力,合力的大小和方向等于力系中各分力的矢量和,可由力多边形的封闭边确定,合力的作用线通过力系的汇交点。矢量关系式为:Fn=Fi (21b)或简写为R=F (矢量和) (21c)若力系中各力的作用线位于同一条直线上,在这种特殊情况下,力多边形变成一条直线,合力为 R=F (代数和) (22)需要指出的是,利用几何法对力系进行合成,对于平面汇交力系,并不要求力系中各分力的作用点位于同

10、一点,因为根据力的可传性原理,只要它们的作用线汇交于同一点即可。另外,几何法只适用于平面汇交力系,而对于空间汇交力系来说,由于作图不方便,用几何法求解是不适宜的。对于由多个力组成的平面汇交力系,用几何法进行简化的优点是直观、方便、快捷,画出力多边形后,按与画分力同样的比例,用尺子和量角器即可量得合力的大小和方向。但是,这种方法要求这图精确、准确,否则误差会较大。二、 解析法求解平面汇交力系合成的另一种常用方法是解析法。这种方法是以力在坐标轴上的投影为基础建立方程的。1、力在平面直角坐标轴上的投影设力F用矢量表示如图23所示。取直角坐标系oxy,使力F在oxy平面内。过力矢的两端点A和B分别向x

11、、y轴作垂线,得垂足a、b及a/、b/,带有正负号的线段ab与a/b/分别称为力F在x、y轴上的投影,记作Fx、Fy。并规定:当力的始端的投影到终端的投影的方向与投影轴的正向一致时,力的投影取正值;反之,当力的始端的投影到终端的投影的方向与投影轴的正向相反时,力的投影取负值。力的投影的值与力的大小及方向有关,设力F与x轴的夹角为,则从图23可知 (23)一般情况下,若已知力F与x和y轴所夹的锐角分别为、,则该力在x、y轴上的投影分别为 (24)即力在坐标轴上的投影,等于力的大小与力和该轴所夹锐角余弦的乘积。当力与轴垂直时,投影为零;而力与轴平行时,投影大小的绝对值等于该力的大小。图23 图24

12、反过来,若已知力F在坐标轴上的投影Fx、Fy,亦可求出该力的大小和方向角: (25)式中为力F与x轴所夹的锐角,其所在的象限由Fx、Fy的正负号来确定。在图23中,若将力沿x、y轴进行分解,可得分力Fx和Fy。应当注意,力的投影和分力是两个不同的概念:力的投影是标量,它只有大小和正负;而力的分力是矢量,有大小和方向。它们与原力的关系各自遵循自己的规则。在直角坐标系中,分力的大小和投影的绝对值是相同的。同时,力的矢量也可以转化为力的标量进行计算,即 F=Fx+Fy= (26)式中i、j分别为沿直角坐标轴x、y轴正向的单位矢量。力在平面直角坐标轴上的投影计算,在力学计算中应用非常普遍,必须熟练掌握

13、。例21 如图24所示,已知,各力的方向如图,试分别求各力在x轴和y轴上的投影。解:根据公式(23)或(24),列表计算如下力力在x轴上的投影()力在y轴上的投影(F1F42、合力投影定理为了用解析法求平面汇交力系的合力,必须先讨论合力及其分力在同一坐标轴上投影的关系。图25如图25所示,设有一平面汇交力系F1、F2、F3作用在物体的点,如图25所示。从任一点A作力多边形ABCD,如图25b所示。则矢量就表示该力系的合力R的大小和方向。取任一轴x如图示,把各力都投影在x轴上,并且令FX1、FX2、FX3和Rx分别表示各分力F1、F2、F3和合力R在x轴上的投影,由图25b可见 Fx1=ab,F

14、x2=bc,Rx=ad而 ad=ab+bc-cd因此可得Rx=Fx1+Fx2+Fx3这一关系可推广到任意个汇交力的情形,即Rx=Fx1+Fx2+Fxn=Fx (26) 由此可见,合力在任一轴上的投影,等于各分力在同一轴上投影的代数和。这就是合力投影定理。3、用解析法求平面汇交力系的合力当平面汇交力系为已知时,如图26所示,我们可选直角坐标系,先求出力系中各力在x轴和y轴上的投影,再根据合力投影定理求得合力R在x、y轴上的投影Rx、Ry,从图26中的几何关系,可见合力R的大小 和方向由下式确定: (27)式中为合力R与x轴所夹的锐角,R在哪个象限由Fx和Fy的正负号来确定,具体详见图27所示。合

15、力的作用线通过力系的汇交点图26 图27 下面举例说明如何求平面汇交力系的合力。例22 如同28所示,固定的圆环上作用着共面的三个力,已知三力均通过圆心试求此力系合力的大小和方向。运用两种方法求解合力。(1) 几何法取比例尺为:1cm代表10kN,画力多边形如图28b所示,其中ab=从起点a向终点d作矢量,即得合力R。由图上量得,ad=4.4cm,根据比例尺可得,R=44kN;合力R与水平线之间的夹角用量角器量得=图28(2) 解析法取如图28所示的直角坐标系,则合力的投影分别为则合力R的大小为合力R的方向为由于0,0,故在第一象限,而合力R的作用线通过汇交力系的汇交点例23 如图29所示,一平面汇交力系作用于点。已知各力方向如图。若此力系的合力R与F2沿同一直线,求F3与合力R的大小。用两种方法取比例尺如图所示。取任一点a开始作力多边形,由b点作得折线abc,再从折线上的c点和a点分别作F3和R的平行线,它们相交于一点d。多边形abcd即为力多边形。根据比例尺量得R=573N,F3=141N,合力R的作用线通过汇交点图29取如图29所示的坐标系。由题可知R沿x轴正向,则又因为则得即 得 又由

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1