ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:62.13KB ,
资源ID:16441185      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/16441185.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(正交函数文档格式.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

正交函数文档格式.docx

1、),于是,可以求出系数为式中的算子表示求两矢量的内积,定义如下系数C12表示的是与的近似程度。当重合时,=0, =1;随着 增大,C12减小;当 时,C12,此时 成为相互垂直的矢量,称为正交矢量。这样,我们就提出这样一个结论:两个矢量是正交的充要条件是它们的内积为0,即 垂直或正交 下面我们来看看,有了正交矢量后,对我们到底有什么好处?对于二维平面上的矢量V在直角坐标中可分解为x方向的分量和y方向上的分量,其中Vx、Vy表示x和y方向上的正交单位矢量,即为了便于研究矢量分解,把相互正交的两个矢量组成一个二维正交矢量集,在此平面上的任意矢量均可用二维正交矢量集的分量组合来表示。同样,对于三维矢

2、量V,也可以用一个三维正交矢量集Vx,Vy,Vz的分量组合来表示,即V = C1Vx+C2Vy+C3Vz根据此原理,可以把K维空间中的任一矢量 分解为K个互相正交的矢量的和。2.1.2 正交函数下面我们来考虑在区间(t1,t2)内用函数来近似表示,即此时,所选择的C12应使得C122(t)与1(t)之间的均方误差最小。为求使均方误差最小时的C12,须使 。即 交换微分与积分次序,可得上式中的第一项为零,因此(2-2)仿照矢量内积定义,定义两个函数和在区间上的内积为则式(2-2)可以改写为(2-3)可以看出,它与矢量正交分解的系数公式(2-1)很相似。和正交矢量的定义类似,当C12=0时,则称内

3、正交。由式(2-3)可知,两函数在区间内正交的充要条件是它们的内积为0,即当两个函数正交时C12=C12=0。2.1.3 正交函数集设有函数集,在区间上满足(2-4) 其中(2-5)则称该函数集为正交函数集。大家要注意,这里的(n)是单位冲激序列,而不是单位冲激函数(t),我们将在离散时间信号的Z变换一章中详细讨论它。如果将任意一个函数f(t)在区间内利用此函数集内的n个函数的线性组合来表示,即(2-6)当要求均方误差最小时,各正交分量的系数为其中, 为非零常数。将式(2-7)代入(2-6)中,得最小的均方误差为(2-8)若对有Kn=1 ,即,则该函数集称为归一化正交函数集,此时,相应的各系数

4、和均方误差为:(2-9)2.1.4 正交复变函数集以上的讨论仅限于实函数或实信号,下面我们来看看复变函数的正交条件。若所讨论的函数和是实变量t的复变函数,则这两个复变函数在区间内相互正交的条件为若在区间内由C12f2(t)来表示,即则使均方误差最小的C12值为(2-10)如果在区间(t1,t2)内,复变函数集 满足(2-11)其中,则称此函数集为正交复变函数集。2.1.5 完备正交函数集前面我们学习了信号可以用正交函数集内的所有正交函数的线性组合来近似,但我们还存在一些疑问没有解决:(1) 是否存在一个完备的正交函数集,即在此函数集外,没有函数与集内所有函数都正交。(2) 是否存在一个精确的正

5、交函数集,即通过集内所有函数的线性组合,可以精确地表示任意信号?这些问题的回答,实际上涉及到了完备正交函数集的两种定义。下面我们来看看。定义1:已知 为正交函数集,若不存在函数x(t)能满足则称此函数集为完备的正交函数集。显然可见,这种定义强调的是函数集合的完全性,即集合囊括了所有的正交函数,是完完全全的显然,若能找到这样的函数,则就它归入正交函数集中,于是该函数集就不完备了。若找不到,则函数集就是完备的。大家看,这个定义,实际上正是根据我们前面提出的第一个疑问来定义的。那么这样的集合到底有没有呢?当然是有的!后面我们会看到相应的例子。那有人就会问了,若根据第二个疑问,又该如何来定义所谓的完备

6、正交函数集呢?好,下面我们来看关于完备正交函数集的第二种定义方法。定义2:用正交函数集在(t1,t2)内表示函数f(t) (2-12)均方误差为 若,则称 为完备的正交函数集。此时有:(2-13)当 时,由式(2-8)立即可以得到(2-14a)如果是归一化完备正交函数集,则(2-14b)式(2-14)也被称为帕斯瓦尔方程,或帕斯瓦尔定理。此方程式表明,一信号所包含的功率等于此信号在完备正交函数集中各分量功率之总和,也即信号用不同方式表示时其能量是守恒的,功率不变。如果上述关系不成立,则正交函数集就是不完备的。于是乎,从完备正交函数集的特性出发,我们证明了帕斯瓦尔方程。关于这个方程式,我们还可以

7、用另外一种方法来证明它。下面给出帕斯瓦尔方程的另外一种证明。证明:由,可得将积分项中差的平方展开,得根据积分运算的可加性,把上式中的各积分子项分开,如下由式(2-7)得,由函数集是正交的可得于是有整理合并可得于是可得 有了这些关于完备正交函数集的定义,我们后面将来看看几个完备正交函数集的例子,以及如何用它们对信号进行正交函数分解。2.1.6 信号分解为完备正交函数在某一时间段内的信号可以利用完备正交函数集的各分量的线性组合来表示。三角函数集和复指数函数集是应用很广泛的完备正交函数集。通常,可将一周期信号展开为三角函数分量的叠加。这正是本章将讨论的傅里叶分析的基础所在。但是大家要注意,完备正交函

8、数集不是仅此一家,别无分店,而是有很多种。如贝塞尔(Bessel)函数集,沃尔什(Walsh)函数集,拉盖尔(Laguerre)函数集,勒让德(Legendre)多项式集,雅可比多项式集和切比雪夫多项式集等属完备的正交函数集。然而,完备正交函数集不限于三角函数集,还有许多种,不过限于篇幅,我们只讨论三角函数集和复指数函数集。(1) 三角函数集三角函数集内组成完备正交函数集,其中T1=2p/w1。下面我们来看看为什么说它是完备的正交函数集?证明一下。这是由于满足了完备正交函数集的要求:下面我们来看看信号是如何用这个完备正交函数集来表示的。对于周期为 的周期函数f(t),可以由上述三角函数的线性组

9、合来表示,即,(2-15)通常把上式称为f(t)的傅里叶级数展开,简写为FS。式中系数an、bn可利用式(2-7)求得。需要指出的是,并非任意周期信号都能进行傅里叶级数展开,周期函数必须满足如下条件才能进行傅里叶级数展开,这些条件称这狄义赫利条件:(a) 在任一周期内,信号f(t)的间断点的个数有限,而且在这些不连续点上,函数必须是有限值。(b) 在任一周期内,信号f(t)的最大值和最小值的数目有限。(c) 在任一周期内,信号f(t)必须是绝对可积的,即绝对可积的意思就是说:绝对值是可以积分的,积分结果是有限值。那什么样的信号满足上面的条件呢?大家不要担心,通常,我们遇到的周期信号一般都能满足

10、狄义赫利条件。(2) 复指数函数集函数集是一个复变函数集,它在区间内是一个完备正交函数集,其中同样的,我们要证明一下,为什么它是完备正交函数集?对复指数函数集可求得即它是满足对完备正交集的要求的。因为从某种意义上讲,复指数函数与三角函数在本质上是一致的,所以,能展开成三角函数的无穷级数的周期信号都应能展开成复指数函数的无穷级数。满足狄义赫利条件的周期函数f(t)可展开为复指数形式傅里叶级数,即(2-16)其中,Fn一般是复数。f(t)既可以是复信号,也可以是实信号。好啦,关于这些系数的求法,以及相互之间的关系,我们在后面再详述。关于系数an、bn和Fn的求法,以及它们之间的关系,我们将在下一节中详述

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1