1、直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2b2c2,那么这个三角形是直角三角形。2. 勾股数:满足a2b2c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。) *附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,133. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。(经典直角三角形:勾三、股四、弦五) 其他方法:(1)有一个角为90的三角形是直角三角形。 (2)有两个角互余的三角形是直角三角形。 用
2、它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c2a2b2,则ABC是以C为直角的三角形;若a2b2c2,则此三角形为钝角三角形(其中c为最大边);若a2b2c2,则此三角形为锐角三角形(其中c为最大边)4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半。 (3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30。5. 勾股定理的作用: (1)已知直角三角形的两边求第三边。 (2)已知直角三角形的一边,求另两边的关系。(3)用于证明线段平方关系的问题。(4
3、)利用勾股定理,作出长为的线段二、平方根:(1119的平方)1、平方根定义:如果一个数的平方等于a,那么这个数就叫做a的平方根。(也称为二次方根),也就是说如果x2=a,那么x就叫做a的平方根。2、平方根的性质:一个正数有两个平方根,它们互为相反数;一个正数a的正的平方根,记作“”,又叫做算术平方根,它负的平方根,记作“”,这两个平方根合起来记作“”。( a叫被开方数, “”是二次根号,这里“”,亦可写成“”)0只有一个平方根,就是0本身。算术平方根是0。负数没有平方根。3、 开平方:求一个数的平方根的运算叫做开平方,开平方和平方运算互为逆运算。4、(1) 平方根是它本身的数是零。(2)算术平
4、方根是它本身的数是0和1。(3)(4)一个数的两个平方根之和为0三、立方根:(19的立方)1、立方根的定义:如果一个数的立方等于a,那么这个数就叫做a的立方根。(也称为二次方根),也就是说如果x3=a,那么x就叫做a的立方根。记作“2、立方根的性质:任何数都有立方根,并且只有一个立方根,正数的立方根是正数,负数的立方根是负数,0的立方根是0.互为相反数的数的立方根也互为相反数,即=3、开立方:求一个数的立方根的运算叫做开立方,开立方与立方运算为互逆运算,开立方的运算结果是立方根。4、立方根是它本身的数是1,0,-1。5、平方根和立方根的区别:(1)被开方数的取值范围不同:在中,在中,a可以为任
5、意数值。(2)正数的平方根有两个,而它的立方根只有一个;负数没有平方根,而它有一个立方根。6、立方根和平方根:不同点:(1)任何数都有立方根,正数和0有平方根,负数没有平方根;即被开方数的取值范围不同:中的被开方数a是非负数;中的被开方数可以是任何数.(2)正数有两个平方根,任何数都有惟一的立方根;(3)立方根等于本身的数有0、1、1,平方根等于本身的数只有0共同点:0的立方根和平方根都是0四、实数:1、定义:有理数和无理数统称为实数无理数:无限不循环小数称(包括所有开方开不尽的数,)。 有理数:有限小数或无限循环小数 注意:分数都是有理数,因为任何一个分数都可以化为有限小数或无限循环小数的形
6、式2、实数的分类: 实数的性质:实数的相反数、倒数、绝对值的意义与在有理数范围内的意义是一样的。 实数同有理数一样,可用数轴上的点表示,且实数和数轴上的点一一对应。 两个实数可以按有理数比较大小的法则比较大小。 实数可以按有理数的运算法则和运算律进行运算。3、近似数:由于实际中常常不需要用精确的数描述一个量,甚至在更多情况下不可能得到精确的数,用以描述所研究的量,这样的数就叫近似数。取近似值的方法四舍五入法4、有效数字:对一个近似数,从左边第一个不是0的数字起,到末位数字止,所有的数都称为这个近似数的有效数字5、科学记数法:把一个数记为6、实数和数轴:每一个实数都可以用数轴上的点来表示;反过来
7、,数轴上每一个点都表示一个实数。实数与数轴上的点是一一对应的。第四章 数量、位置的变化一、 在平面内,确定物体的位置一般需要两个数据。二、平面直角坐标系及有关概念 1、平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。注意:x轴和y轴上的点(坐标轴上的点),不
8、属于任何一个象限。3、点的坐标的概念对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。平面内点的与有序实数对是一一对应的。4、不同位置的点的坐标的特征 (1)、各象限内点的坐标的特征 点P(x,y)在第一象限点P(x,y)在第二象限点P(x,y)在第三象限点P(x,y)在第四象限(2)、坐标轴上的点的特征点P(x,y)在x
9、轴上,x为任意实数点P(x,y)在y轴上,y为任意实数点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)即原点(3)、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线(直线y=x)上x与y相等点P(x,y)在第二、四象限夹角平分线上x与y互为相反数(4)、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。位于平行于y轴的直线上的各点的横坐标相同。(5)、关于x轴、y轴或原点对称的点的坐标的特征点P与点p关于x轴对称横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P(x,-y)点P与点p关于y轴对称纵坐标
10、相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P(-x,y)点P与点p关于原点对称横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P(-x,-y)(6)、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x轴的距离等于(2)点P(x,y)到y轴的距离等于(3)点P(x,y)到原点的距离等于三、坐标变化与图形变化的规律:坐标( x , y )的变化 图形的变化 x a或 y a 被横向或纵向拉长(压缩)为原来的 a倍 a, y 放大(缩小)为原来的 a倍 ( -1)或 y ( -1) 关于 y 轴或 x 轴对称 ( -1), y 关于原点成中心
11、对称 x +a或 y+ a 沿 x 轴或 y 轴平移 a个单位 x +a, y+ a 沿 x 轴平移 a个单位,再沿 y 轴平移 a个单第五章 一次函数一、函数:一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。二、自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。三、函数的三种表示法及其优缺点(1)关系式(解析)法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种
12、表示法叫做关系式(解析)法。(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。(3)图象法用图象表示函数关系的方法叫做图象法。四、由函数关系式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。五、正比例函数和一次函数 1、正比例函数和一次函数的概念一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当一次函数中的b=0时(即)(k为常
13、数,k0),称y是x的正比例函数。2、一次函数的图像: 所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。k的符号b的符号函数图像图像特征kb y 0 x图像经过一、二、三象限,y随x的增大而增大。b图像经过一、三、四象限,y随x的增大而增大。K0时,图像经过第一、三象限,y随x的增大而增大;(2)当k0时,图像经过第二、四象限,y随x的增大而减小。5、一次函数的性质一般地,一次函数0时,y随x的增大而增大0时,y随x的增大而减小6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要
14、确定正比例函数定义式(k0)中的常数k。确定一个一次函数,需要确定一次函数定义式0)中的常数k和b。解这类问题的一般方法是待定系数法。7、一次函数与一元一次方程的关系: 任何一个一元一次方程都可转化为:kx+b=0(k、b为常数,k0)的形式 而一次函数解析式形式正是y=kx+b(k、b为常数,k0)当函数值为0时,即kx+b=0就与一元一次方程完全相同 结论:由于任何一元一次方程都可转化为kx+b=0(k、b为常数,k0)的形式所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值 从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值第六章 数据的集中程度1、刻画数据的集中趋势(平均水平)的量:平均数 、众数、中位数 2、平均数(1)平均数:一般地,对于n个数我们把叫做这n个数的算术平均数,简称平均数,记为(2)加权平均数: 3、众数一组数据中出现次数最多的那个数据叫做这组数据的众数。4、中位数一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1