1、(见下页教学进度登记表)教学进度及教案批阅登记表周次起止日期教学内容及要求周授课时教案批阅批阅日期组长签名18.248.30111 全等三角形(2) 1121 三角形全等的条件(一)(2)1121 三角形全等的条件(二)(2)528.319.61123 三角形全等的条件(三)(2) 1123 三角形全等的条件-直角三角形全等的判定(四)(2)39.79.13113 角的平分线的性质(一)(2)1132 角的平分线的性质(二)(2)1211 轴对称(一)(2)49.149.201212 轴对称(二)(2)122 轴对称变换(2) 9.219.27122 .2 用坐标表示轴对称(2)69.2810
2、.412311 等腰三角形(2)12311 等腰三角形(二)(2)710.510.11123 等边三角形(一)(2)1232 等边三角形(二)(2) 1232. 等边三角形(三)(2)810.1210.1813.1 平方根(3)132立方根(2)910.1910.25133实数(2)141 变量与函数(2)1413 函数图象(1)1010.2611.11413 函数图象(2)1421 正比例函数(1)1422 一次函数(2)1111.211.8中期复习 中期考试1211.911.151422 一次函数(1)一次函数应用(2)实践与探索(2)1311.1611.2214.31 一次函数与一元一次
3、方程(2)1411.2311.2915.1.1整式(1) 15.1.2整式的加减(2) 5.2.1同底数幂的乘法(1)15.2.2幂的乘方(1) 15.2.3积的乘方(1)1511.3012.615.2.4整式的乘法(4) 15.3.1平方差公式(2) 1612.712.1315.3.2完全平方公式(3) 15.4.1同底数幂的除法(1) 15.4.2整式的除法(2) 1712.1412.2015.5因式分解(1) 15.5.1提公因式法(2) 15.5.2公式法(3) 1812.2112.27第十五章小结(3) 总复习(3)1912.281.3期终复习 期终考试201.41.10工 作 总
4、结 111 全等三角形教学目标 1知道什么是全等形、全等三角形及全等三角形的对应元素; 2知道全等三角形的性质,能用符号正确地表示两个三角形全等; 3能熟练找出两个全等三角形的对应角、对应边教学重点:全等三角形的性质教学难点:找全等三角形的对应边、对应角教学过程 提出问题,创设情境 1、问题:你能发现这两个三角形有什么美妙的关系吗?这两个三角形是完全重合的 2学生自己动手(同桌两名同学配合) 取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样 3获取概念 让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号 形
5、状与大小都完全相同的两个图形就是全等形要是把两个图形放在一起,能够完全重合,就可以说明这两个图形的形状、大小相同 概括全等形的准确定义:能够完全重合的两个图形叫做全等形请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义仔细阅读课本中“全等”符号表示的要求 导入新课 利用投影片演示 将ABC沿直线BC平移得DEF;将ABC沿BC翻折180得到DBC;将ABC旋转180得AED 议一议:各图中的两个三角形全等吗?不难得出: ABCDEF,ABCDBC,ABCAED (注意强调书写时对应顶点字母写在对应的位置上) 启示:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没
6、有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略 观察与思考: 寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢? (引导学生从全等三角形可以完全重合出发找等量关系) 得到全等三角形的性质:全等三角形的对应边相等 全等三角形的对应角相等例1如图,OCAOBD,C和B,A和D是对应顶点,说出这两个三角形中相等的边和角 问题:OCAOBD,说明这两个三角形可以重合,思考通过怎样变换可以使两三角形重合?将OCA翻折可以使OCA与OBD重合因为C和B、A和D是对应顶点,所以C和B重合,A和D重合 C=B;A=D;AOC=DOBAC=DB;OA=OD;
7、OC=OB 总结:两个全等的三角形经过一定的转换可以重合一般是平移、翻转、旋转的方法例2如图,已知ABEACD,ADE=AED,B=C,指出其他的对应边和对应角 分析:对应边和对应角只能从两个三角形中找,所以需将ABE和ACD从复杂的图形中分离出来 根据位置元素来找:有相等元素,它们就是对应元素,然后再依据已知的对应元素找出其余的对应元素常用方法有: (1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边 (2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角 解:对应角为BAE和CAD 对应边为AB与AC、AE与AD、BE与CD 例3已知如图ABCADE,试找出对应
8、边、对应角(由学生讨论完成) 借鉴例2的方法,可以发现A=A,在两个三角形中A的对边分别是BC和DE,所以BC和DE是一组对应边而AB与AE显然不重合,所以AB与AD是一组对应边,剩下的AC与AE自然是一组对应边了再根据对应边所对的角是对应角可得B与D是对应角,ACB与AED是对应角所以说对应边为AB与AD、AC与AE、BC与DE对应角为A与A、B与D、ACB与AED 做法二:沿A与BC、DE交点O的连线将ABC翻折180后,它正好和ADE重合这时就可找到对应边为:AB与AD、AC与AE、BC与DE对应角为A与A、B与D、ACB与AED 课堂练习 课本P90练习1 课本P90习题131复习巩固
9、1 课时小结通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用性质可以找到两个全等三角形的对应元素这也是这节课大家要重点掌握的找对应元素的常用方法有两种: (一)从运动角度看 1翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素 2旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素 3平移法:沿某一方向推移使两三角形重合来找对应元素 (二)根据位置元素来推理 1全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边 2全等三角形对应边所对的角是对应角; 作业:课本P90习题131、复习巩固2、综合运用3 课后反思 1121 三角形全等的
10、条件(一) 教学目标 1三角形全等的“边边边”的条件2了解三角形的稳定性 3经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程 教学重点: 三角形全等的条件 教学难点:寻求三角形全等的条件 教学过程 创设情境,引入新课 出示投影片,回忆前面研究过的全等三角形已知ABCABC,找出其中相等的边与角 图中相等的边是:AB=AB、BC=BC、AC=AC相等的角是:A=A、B=B、C=C 展示课作前准备的三角形纸片,提出问题:你能画一个三角形与它全等吗?怎样画? (可以先量出三角形纸片的各边长和各个角的度数,再作出一个三角形使它的边、角分别和已知的三角形纸片的对应边、对应角相等这样作出
11、的三角形一定与已知的三角形纸片全等) 这是利用了全等三角形的定义来作图那么是否一定需要六个条件呢?条件能否尽可能少呢?现在我们就来探究这个问题 出示投影片 1只给一个条件(一组对应边相等或一组对应角相等),画出的两个三角形一定全等吗? 2给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做 三角形一内角为30,一条边为3cm 三角形两内角分别为30和50 三角形两条边分别为4cm、6cm 学生分组讨论、探索、归纳,最后以组为单位出示结果作补充交流 结果展示:1只给定一条边时: 只给定一个角时:2给出的两个条件可能是:一边一内角、两内角、两边 可以发现
12、按这些条件画出的三角形都不能保证一定全等 给出三个条件画三角形,你能说出有几种可能的情况吗? 归纳:有四种可能即:三内角、三条边、两边一内角、两内有一边 在刚才的探索过程中,我们已经发现三内角不能保证三角形全等下面我们就来逐一探索其余的三种情况 已知一个三角形的三条边长分别为6cm、8cm、10cm你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗? 1作图方法: 先画一线段AB,使得AB=6cm,再分别以A、B为圆心,8cm、10cm为半径画弧,两弧交点记作C,连结线段AC、BC,就可以得到三角形ABC,使得它们的边长分别为AB=6cm,AC=8cm,BC=10cm
13、 2以小组为单位,把剪下的三角形重叠在一起,发现都能够重合这说明这些三角形都是全等的 3特殊的三角形有这样的规律,要是任意画一个三角形ABC,根据前面作法,同样可以作出一个三角形ABC,使AB=AB、AC=AC、BC=BC将ABC剪下,发现两三角形重合这反映了一个规律: 三边对应相等的两个三角形全等,简写为“边边边”或“SSS” 用上面的规律可以判断两个三角形全等判断两个三角形全等的推理过程,叫做证明三角形全等所以“SSS”是证明三角形全等的一个依据请看例题 例如图,ABC是一个钢架,AB=AC,AD是连结点A与BC中点D的支架求证:ABDACD 师生共析要证ABDACD,可以看这两个三角形的
14、三条边是否对应相等 证明:因为D是BC的中点 所以BD=DC 在ABD和ACD中 所以ABDACD(SSS) 生活实践的有关知识:用三根木条钉成三角形框架,它的大小和形状是固定不变的,而用四根木条钉成的框架,它的形状是可以改变的三角形的这个性质叫做三角形的稳定性所以日常生活中常利用三角形做支架就是利用三角形的稳定性例如屋顶的人字梁、大桥钢架、索道支架等 随堂练习如图,已知AC=FE、BC=DE,点A、D、B、F在一条直线上,AD=FB要用“边边边”证明ABCFDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件? 2课本P94练习 本节课我们探索得到了三角形全等
15、的条件,发现了证明三角形全等的一个规律SSS并利用它可以证明简单的三角形全等问题 作业 1习题132复习巩固1、2 习题132综合运用9 课后作业:课堂感悟与探究 活动与探索如图,一个六边形钢架ABCDEF由6条钢管连结而成,为使这一钢架稳固,请你用三条钢管连接使它不能活动,你能找出几种方法? 本题的目的是让学生能够进一步理解三角形的稳定性在现实生活中的应用 结果:(1)可从这六个顶点中的任意一个作对角线,把这个六边形划分成四个三角形如图(1)为其中的一种(2)也可以把这个六边形划分成四个三角形如图(2)课后反思1121 三角形全等的条件(二) 1三角形全等的“边角边”的条件 2经历探索三角形
16、全等条件的过程,体会利用操作、归纳获得数学结论的过程 3掌握三角形全等的“SS”条件,了解三角形的稳定性 4能运用“SS”证明简单的三角形全等问题三角形全等的条件一、创设情境,复习提问1怎样的两个三角形是全等三角形?2全等三角形的性质?3指出图中各对全等三角形的对应边和对应角,并说明通过怎样的变换能使它们完全重合:图(1)中:ABDACE,AB与AC是对应边;图(2)中:ABCAED,AD与AC是对应边三角形全等的判定的内容是什么?二、导入新课1三角形全等的判定(二)(1)全等三角形具有“对应边相等、对应角相等”的性质那么,怎样才能判定两个三角形全等呢?也就是说,具备什么条件的两个三角形能全等
17、?是否需要已知“三条边相等和三个角对应相等”?现在我们用图形变换的方法研究下面的问题:如图2,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,ABO和CDO是否能完全重合呢?不难看出,这两个三角形有三对元素是相等的:AOCO,AOB COD,BODO如果把OAB绕着O点顺时针方向旋转,因为OAOC,所以可以使OA与OC重合;又因为AOB COD, OBOD,所以点B与点D重合这样ABO与CDO就完全重合(此外,还可以图1(1)中的ACE绕着点A逆时针方向旋转CAB的度数,也将与ABD重合图1( 2)中的ABC绕着点A旋转,使AB与AE重合,再把ADE沿着AE(AB)翻折180两个三角
18、形也可重合)由此,我们得到启发:判定两个三角形全等,不需要三条边对应相等和三个角对应相等而且,从上面的例子可以引起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等2上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:画DAE45,在AD、AE上分别取 B、C,使 AB3.1cm, AC2.8cm连结BC,得ABC按上述画法再画一个ABC(2)把ABC剪下来放到ABC上,观察ABC与ABC是否能够完全重合?3边角边公理有两边和它们的夹角对应相等的两个三角形全等(简称“边角边”或“SAS”)三、例题与练习1填空:(1)如图3,已知ADBC,ADCB,要用边
19、角边公理证明ABCCDA,需要三个条件,这三个条件中,已具有两个条件,一是ADCB(已知),二是_;还需要一个条件_(这个条件可以证得吗?)(2)如图4,已知ABAC,ADAE,12,要用边角边公理证明ABDACE,需要满足的三个条件中,已具有两个条件:_(这个条件可以证得吗?2、例1 已知: ADBC,AD CB(图3)求证:ADCCBA问题:如果把图3中的ADC沿着CA方向平移到ADF的位置(如图5),那么要证明ADF CEB,除了ADBC、ADCB的条件外,还需要一个什么条件(AF CE或AE CF)?怎样证明呢?例2 已知:ABAC、ADAE、12(图4)求证:ABDACE四、小 结:
20、1根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件2找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理五、作 业:1已知:如图,ABAC,F、E分别是AB、AC的中点求证:ABEACF2已知:点A、F、E、C在同一条直线上, AFCE,BEDF,BEDFABECDF1123 三角形全等的条件(三) 1三角形全等的条件:角边角、角角边 2三角形全等条件小结 3掌握三角形全等的“角边角”“角角边”条件 4能运用全等三角形的条件,解决简单的推理证明问题已知两角一边的三角形全等探究灵活运用三角形全等条件证明
21、提出问题,创设情境 1复习:(1)三角形中已知三个元素,包括哪几种情况? 三个角、三个边、两边一角、两角一边 (2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么? 三种:定义;SSS;SAS 2在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢? 问题1:三角形中已知两角一边有几种可能? 1两角和它们的夹边 2两角和其中一角的对边 问题2:三角形的两个内角分别是60和80,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律? 将所得三角形重叠在一起,
22、发现完全重合,这说明这些三角形全等提炼规律:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”) 问题3:我们刚才做的三角形是一个特殊三角形,随意画一个三角形ABC,能不能作一个ABC,使A=A、B=B、AB=AB呢? 先用量角器量出A与B的度数,再用直尺量出AB的边长 画线段AB,使AB=AB 分别以A、B为顶点,AB为一边作DAB、EBA,使DAB=CAB,EBA=CBA 射线AD与BE交于一点,记为C 即可得到ABC 将ABC与ABC重叠,发现两三角形全等 两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA”) 思考:在一个三角形中两角确定,第
23、三个角一定确定我们是不是可以不作图,用“ASA”推出“两角和其中一角的对边对应相等的两三角形全等”呢? 探究问题4:如图,在ABC和DEF中,A=D,B=E,BC=EF,ABC与DEF全等吗?能利用角边角条件证明你的结论吗?A+B+C=D+E+F=180 A=D,B=E A+B=D+E C=F 在ABC和DEF中 ABCDEF(ASA) 两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”) 例如下图,D在AB上,E在AC上,AB=AC,B=CAD=AE 分析AD和AE分别在ADC和AEB中,所以要证AD=AE,只需证明ADCAEB即可在ADC和AEB中 所以ADCAEB(ASA) 所以AD=AE (一)课本P99练习1、2 (二)补充练习图中的两个三角形全等吗?请说明理由 答案:图(1)中由“ASA”可证得ACDACB图(2)由“AAS”可证得ACEBDC 至此,我们有五种判定三角形全等的方法: 1全等三角形的定义 2判定定理:边边边
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1