1、以M1A1为对角线作第二个正方形A2A1B2 M1,对角线A1 M1和A2B2 交于点M2;以M2A1为对角线作第三个正方形A3A1B3 M2,对角线A1 M2和A3B3 交于点M3;,依次类推,这样作的第n个正方形对角线交点的坐标为Mn_二、选择题(每题3分,满分30分,请将各题答案均涂或写在答题卡上)11下列计算中,正确的是( )A B C D 12下列图形中既是轴对称图形又是中心对称图形的是( )13由一些大小相同的小正方体搭成的几何体的主视图和左视图如图, 则搭成该几何体的小正方体的个数最少是( )A3 B4 C5 D614一组数据1,2,的平均数为2,另一组数据-l,1,2,b的唯一
2、众数为-l,则数据-1,1,2的中位数为( )A-1 B1 C2 D315一水池有甲、乙、丙三个水管,其中甲、丙两管为进水管,乙管为出水管单位时间内,甲管水流量最大,丙管水流量最小先开甲、乙两管,一段时间后,关闭乙管开丙管,又经过一段时间,关闭甲管开乙管则能正确反映水池蓄水 量y(立方米)随时间t(小时)变化的图象是( )16己知关于x的分式方程=1的解是非正数,则a的取值范围是( )Aal Ba2 Ca1且a2 Da1且a217如图,AC是O的切线,切点为C,BC是O的直径,AB交O于点D,连接OD,若A=50,则COD的度数为( )A40 B50 C60 D8018如图,已知直线AC与反比
3、例函数图象交于点A,与轴、轴分别交于点C、E,E恰为线段AC的中点,SEOC=1,则反比例函数的关系式为( )19在国家倡导的“阳光体育”活动中,老师给小明30元钱,让他买三样体育用品;大绳,小绳,毽子其中大绳至多买两条,大绳每条10元,小绳每条3元,毽子每个1元在把钱都用尽的条件下,买法共有( )A6种 B7种 C8种 D9种20如图,在矩形ABCD中,AD=AB,BAD的平分线交BC于点E,DHAE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:AED=CED;OE=OD;BH=HF;BCCF=2HE;AB=HF,其中正确的有( )A2个 B3个 C4个 D5个三、解答
4、题(满分60分)21.(本题满分5分)先化简,再求代数式的值,其中22.(本题满分6分)每个小方格都是边长为1个单位长度的小正方形,OAB在平面直角坐标系中的位置如图所示(1)将OAB先向右平移5个单位,再向上平移3个单位,得到O1A1B1,请画出O1A1B1并直接写出点B1的坐标;(2)将OAB绕原点O顺时针旋转90,得到OA2B2,请画出OA2B2,并求出点A旋转到A2时线段OA扫过的面积23.(本题满分6分)如图:抛物线与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C,OB=OC,连接BC,抛物线的顶点为D连结B、D两点(1)求抛物线的解析式(2)求CBD的正弦值24.(本题满分
5、7分)某校为了了解本校九年级学生的视力情况(视力情况分为:不近视,轻度近视,中度近视,重度近视),随机对九年级的部分学生进行了抽样调查,将调查结果进行整理后,绘制了如下不完整的统计图,其中不近视与重度近视人数的和是中度近视人数的2倍请你根据以上信息解答下列问题:(1)求本次调查的学生人数;(2)补全条形统计图,在扇形统计图中,“不近视”对应扇形的圆心角度数是 度;(3)若该校九年级学生有1050人,请你估计该校九年级近视(包括轻度近视,中度近视,重度近视)的学生大约有多少人25.(本题满分8分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的
6、距离为y(km),图中的折线表示y与x之间的函数关系,根据图像回答以下问题:(1)请在图中的( )内填上正确的值,并写出两车的速度和(2)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围(3)请直接写出两车之间的距离不超过15km的时间范围26.(本题满分8分)已知四边形ABCD为正方形,E是BC的中点,连接AE,过点A作AFD,使AFD=2EAB,AF交CD于点F,如图,易证:AF=CD+CF(1)如图,当四边形ABCD为矩形时,其他条件不变,线段AF,CD,CF之间有怎样的数量关系?请写出你的猜想,并给予证明;(2)如图,当四边形ABCD为平行四边形时,其他条件不变,线段
7、AF,CD,CF之间又有怎样的数量关系?请直接写出你的猜想图 图 图27.(本题满分10分)某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种种材料各3千克经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B产品不少于38件,问符合生产条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择那种生产方
8、案,使生产这60件产品的成本最低?(成本=材料费+加工费)28.(本题满分10分)如图,在平面直角坐标系中,已知矩形AOBC的顶点C的坐标是(2,4),动点P从点A出发,沿线段AO向终点O运动,同时动点Q从点B出发,沿线段BC向终点C运动点P、Q的运动速度均为1个单位,运动时间为t秒过点P作PEAO交AB于点E(1)求直线AB的解析式;(2)设PEQ的面积为S,求S与t时间的函数关系,并指出自变量t的取值范围;(3)在动点P、Q运动的过程中,点H是矩形AOBC内(包括边界)一点,且以B、Q、E、H为顶点的四边形是菱形,直接写出t值和与其对应的点H的坐标(答案写在此卷上无效!)2018牡丹江管理
9、局北斗星协会一模考试数学参考答案一、填空题(每小题3分,满分30分)1、81013; 2、x0且x1; 3、AB=DC等(答案不唯一); 4、;5、a1; 6、21; 7、6.2; 8、2;9、(答对1个给2分,多答或含有错误答案不得分) 10、二、选择题(每小题3分,满分30分)11.D 12.B 13.B 14.B 15.D 16.D 17.D 18.B 19.D 20.B21(本小题满分5分)解:原式=,-(3分)=-(1分)原式=-(1分)22(本小题满分6分)(1)如图所示-(2分)B1的坐标为:(9,7)-(1分)(2)如图所示-(1分)AO=,-(1分)S =-(1分)23(本小
10、题满分6分)(1)设ya(x+1)(x-3)把C(0,-3)代入得a=1-(1分)所以抛物线的解析式为:y=x2-2x-3-(1分)(2)所以抛物线顶点坐标为D(1,4)过点D分别作轴的垂线,垂足分别为E、F.B(3,0)、C(0,-3)在RtBOC中,OB=3,OC=3,. C(0,-3)、D(1,-4)在RtCDF中,DF=1,CF=OF-OC=4-3=1,D(1,4)、E(1,0)、B(3,0)在RtBDE中,DE=4,BE=OB-OE=3-1=2, 故BCD为直角三角形. -(3分)所以sinCBD=-(1分)24(本小题满分7分)(1)本次调查的学生数是:1428%=50(人);-(
11、2分)(2)补全条形图:不近视的人数20;重度近视人数12;圆心角度数144-(3分)(3)1050=630(人)-(1分)答:该校九年级近视的学生大约630人-(1分)25(本小题满分8分)(1)(900);两车的速度和为225kmh. -(2分)(2)90012=75kmh; 225-75=150kmh; 900150=6h;225(6-4)=450km;C(6,450)-(2分)设yBC=kx+b,由B(4,0);C(6,450)得:yBC=225x-900(4x6)-(2分)(3). -(2分)26(本小题满分8分)(1)图结论:AF=CD+CF. -(2分)证明:作DC,AE的延长线
12、交于点G.四边形ABCD是矩形,G=EAB.AFD=2EAB=2G=FAG+G,G=FAG.AF=FG=CF+CG.由E是BC中点,可证CGEBAE,CG=AB=CD.AF=CF+CD. -(4分)(2)图结论:AF=CD+CF. -(2分)27(本小题满分10分)(1)设甲种材料每千克x元,乙种材料每千克y元, x+y=60 x=252x+3y=155 解得 y=35 -(2分)甲种材料每千克25元,乙种材料每千克35元 -(1分)(2)设生产B产品m件,则生产A产品(60-m)件,(254+351)(60-m)+(353+253)m9900m38 -(2分) 解得38m40-(1分)m为整
13、数,m的值为38、39、40共三种方案。-(1分)(3)设生产成本为w元,则w=(253)m=55m+10500 -(2分)k=550,w随m的增大而增大当m=38时,总成本最低生产A产品22件,B产品38件成本最低 -(1分)28(本小题满分10分)(1)C(2,4),A(0,4),B(2,0),设直线AB的解析式为y=kx+b,解得直线AB的解析式为y=2x+4-(2分)(2)如图,过点Q作QFy轴于F,PEOB,有AP=BQ=t,PE=t,AF=CQ=4t,当0t2时,PF=42t,S=PEPF=t(42t)=tt2,-(2分)即S=t2+t(0t2),当2t4时,PF=2t4,t(2t4)=t2t(2t4)-(2分)(3)t1=,H1(),t2=20,H2(10,4)-(4分)(说明:考生如有不同于本参考答案的解题方法,只要正确,可参照本评分标准,酌情给分)
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1