1、解析由分步乘法计数原理知,用0,1,9十个数字组成三位数(可用重复数字)的个数为91010900,组成没有重复数字的三位数的个数为998648,则组成有重复数字的三位数的个数为900648252.故选B.2满足a,b1,0,1,2,且关于x的方程ax22xb0有实数解的有序数对(a,b)的个数为()A14 B13 C12 D10解析当a0时,关于x的方程为2xb0,此时有序数对(0,1),(0,0),(0,1),(0,2)均满足要求;当a0时,44ab0,ab1,此时满足要求的有序数对为(1,1),(1,0),(1,1),(1,2),(1,1),(1,0),(1,1),(2,1),(2,0)综
2、上,满足要求的有序数对共有13个,故选B.3从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A24 B18 C12 D6解析分两类情况讨论:第1类,奇偶奇,个位有3种选择,十位有2种选择,百位有2种选择,共有32212(个)奇数;第2类,偶奇奇,个位有3种选择,十位有2种选择,百位有1种选择,共有316(个)奇数根据分类加法计数原理,知共有12618(个)奇数4(教材改编)5位同学报名参加两个课外活动小组,每位同学限报其中一个小组,则不同的报名方法有_种答案32解析每位同学都有2种报名方法,因此,可分五步安排5名同学报名,由分步乘法计数原理,知总的报
3、名方法共2232(种)题型一分类加法计数原理的应用例1高三一班有学生50人,其中男生30人,女生20人;高三二班有学生60人,其中男生30人,女生30人;高三三班有学生55人,其中男生35人,女生20人(1)从高三一班或二班或三班中选一名学生任学生会主席,有多少种不同的选法?(2)从高三一班、二班男生中或从高三三班女生中选一名学生任学生会体育部长,有多少种不同的选法?解(1)完成这件事有三类方法:第一类,从高三一班任选一名学生共有50种选法;第二类,从高三二班任选一名学生共有60种选法;第三类,从高三三班任选一名学生共有55种选法根据分类加法计数原理,任选一名学生任学生会主席共有5060551
4、65(种)不同的选法(2)完成这件事有三类方法:第一类,从高三一班男生中任选一名共有30种选法;第二类,从高三二班男生中任选一名共有30种选法;第三类,从高三三班女生中任选一名共有20种选法根据分类加法计数原理,共有30302080(种)不同的选法思维升华分类标准是运用分类加法计数原理的难点所在,重点在于抓住题目中的关键词或关键元素、关键位置首先根据题目特点恰当选择一个分类标准;其次分类时应注意完成这件事情的任何一种方法必须属于某一类(2016全国丙卷)定义“规范01数列”an如下:an共有2m项,其中m项为0,m项为1,且对任意k2m,a1,a2,ak中0的个数不少于1的个数若m4,则不同的
5、“规范01数列”共有()A18个 B16个 C14个 D12个答案C解析第一位为0,最后一位为1,中间3个0,3个1,3个1在一起时为000111,001110;只有2个1相邻时,共A个,其中110100,110010,110001,101100不符合题意;三个1都不在一起时有C个,共28414(个)题型二分步乘法计数原理的应用例2(1)(2016全国甲卷)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A24 B18 C12 D9(2)有六名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有
6、_种不同的报名方法答案(1)B(2)120解析(1)从E点到F点的最短路径有6种,从F点到G点的最短路径有3种,所以从E点到G点的最短路径为6318(种),故选B.(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计数原理,可得不同的报名方法共有654120(种)引申探究1本例(2)中若将条件“每项限报一人,且每人至多参加一项”改为“每人恰好参加一项,每项人数不限”,则有多少种不同的报名方法?解每人都可以从这三个比赛项目中选报一项,各有3种不同的报名方法,根据分步乘法计数原理,可得不同的报名方法共有36729
7、(种)2本例(2)中若将条件“每项限报一人,且每人至多参加一项”改为“每项限报一人,但每人参加的项目不限”,则有多少种不同的报名方法?解每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,根据分步乘法计数原理,可得不同的报名方法共有63216(种)思维升华(1)利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事(2)分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成(1)(教材改编)已知集合M1,2,3,N4,5,6,7,从M,N这两个集合
8、中各选一个元素分别作为点的横坐标、纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是()A12 B8 C6 D4(2)(2016石家庄模拟)五名学生报名参加四项体育比赛,每人限报一项,则不同的报名方法的种数为_五名学生争夺四项比赛的冠军(冠军不并列),则获得冠军的可能性有_种答案(1)C(2)4554解析(1)分两步:第一步先确定横坐标,有3种情况,第二步再确定纵坐标,有2种情况,因此第一、二象限内不同点的个数是326个,故选C.(2)五名学生参加四项体育比赛,每人限报一项,可逐个学生落实,每个学生有4种报名方法,共有45种不同的报名方法五名学生争夺四项比赛的冠军,可对4
9、个冠军逐一落实,每个冠军有5种获得的可能性,共有54种获得冠军的可能性题型三两个计数原理的综合应用例3(1)如图,矩形的对角线把矩形分成A,B,C,D四部分,现用5种不同颜色给四部分涂色,每部分涂1种颜色,要求共边的两部分颜色互异,则共有_种不同的涂色方法(2)如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是_答案(1)260(2)36解析(1)区域A有5处涂色方法;区域B有4种涂色方法;区域C的涂色方法可分2类:若C与A涂同色,区域D有4种涂色方法;若C与A涂不同色,此时区域C有3种涂色方
10、法,区域D也有3种涂色方法所以共有544533260(种)涂色方法(2)第1类,对于每一条棱,都可以与两个侧面均成“正交线面对”,这样的“正交线面对”有21224(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个所以正方体中“正交线面对”共有241236(个)思维升华利用两个计数原理解决应用问题的一般思路(1)弄清完成一件事是做什么(2)确定是先分类后分步,还是先分步后分类(3)弄清分步、分类的标准是什么(4)利用两个计数原理求解济南质检)如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相
11、同的颜色,则不同的涂色种数有_答案96解析按区域1与3是否同色分类:(1)区域1与3同色:先涂区域1与3有4种方法,再涂区域2,4,5(还有3种颜色)有A种方法区域1与3涂同色,共有4A24(种)方法(2)区域1与3不同色:先涂区域1与3有A种方法,第二步涂区域2有2种涂色方法,第三步涂区域4只有一种方法,第四步涂区域5有3种方法这时共有A1372(种)方法故由分类加法计数原理,不同的涂色种数为247296.12利用两个基本原理解决计数问题典例(1)把3封信投到4个信箱,所有可能的投法共有()A24种 B4种 C43种 D34种(2)某人从甲地到乙地,可以乘火车,也可以坐轮船,在这一天的不同时
12、间里,火车有4次,轮船有3次,问此人的走法可有_种错解展示解析(1)因为每个信箱有三种投信方法,共4个信箱,所以共有3334(种)投法(2)乘火车有4种方法,坐轮船有3种方法,共有3412(种)方法答案(1)D(2)12现场纠错解析(1)第1封信投到信箱中有4种投法;第2封信投到信箱中也有4种投法;第3封信投到信箱中也有4种投法只要把这3封信投完,就做完了这件事情,由分步乘法计数原理可得共有43种方法(2)因为某人从甲地到乙地,乘火车的走法有4种,坐轮船的走法有3种,每一种方法都能从甲地到乙地,根据分类加法计数原理,可得此人的走法共有437(种)答案(1)C(2)7纠错心得(1)应用计数原理解
13、题首先要搞清是分类还是分步(2)把握完成一件事情的标准,如典例(1)没有考虑每封信只能投在一个信箱中,导致错误1(2016镇海中学模拟)有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则不同的监考方法有()A8种 B9种C10种 D11种解析设四位监考教师分别为A,B,C,D,所教班分别为a,b,c,d,假设A监考b,则余下三人监考剩下的三个班,共有3种不同方法,同理A监考c,d时,也分别有3种不同方法,由分类加法计数原理,共有3339(种)不同的监考方法2小明有4枚完全相同的硬币,每个硬币都分正反两面他想把4个硬币摆成一摞,且满足相邻两枚硬币的正面与正
14、面不相对,则不同的摆法有()A4种 B5种 C6种 D9种解析记反面为1,正面为2,则正反依次相对有12121212,21212121两种;有两枚反面相对有21121212,21211212,21212112三种,共5种摆法,故选B.3将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,则不同的安排方案共有()A12种 B10种C9种 D8种答案A解析第一步,选派一名教师到甲地,另一名到乙地,共有C2(种)选派方法;第二步,选派两名学生到甲地,另外两名到乙地,有C6(种)选派方法由分步乘法计数原理,不同的选派方案共有2612(种)4(201
15、5四川)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A144个 B120个 C96个 D72个解析由题意知,首位数字只能是4,5,若万位是5,则有3A72(个);若万位是4,则有248(个),故比40 000大的偶数共有7248120(个)故选B.5将一个四面体ABCD的六条棱上涂上红、黄、白三种颜色,要求共端点的棱不能涂相同颜色,则不同的涂色方案有()A1种 B3种C6种 D9种解析因为只有三种颜色,又要涂六条棱,所以应该将四面体的对棱涂成相同的颜色故有316(种)涂色方案6将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字
16、母也互不相同,则不同的排列方法共有()A12种 B18种C24种 D36种解析先排第一列,由于每列的字母互不相同,因此共有A种不同排法再排第二列,其中第二列第一行的字母共有2种不同的排法,第二列第二、三行的字母只有一种排法因此共有A2112(种)不同的排列方法7(2016大连模拟)将数字1,2,3,4填入标号为1,2,3,4的四个方格,每格填一个数,则每个方格的标号与所填数字均不相同的填法有_种答案9解析编号为1的方格内填数字2,共有3种不同填法;编号为1的方格内填数字3,共有3种不同填法;编号为1的方格内填数字4,共有3种不同填法于是由分类加法计数原理,得共有3339(种)不同的填法8如图所
17、示,在A,B间有四个焊接点,若焊接点脱落,则可能导致电路不通,今发现A,B之间线路不通,则焊接点脱落的不同情况有_种答案13解析四个焊点共有24种情况,其中使线路通的情况有:1,4都通,2和3至少有一个通时线路才通,共3种可能故不通的情况有24313(种)可能9(2016日照模拟)从1,2,3,4,7,9六个数中,任取两个数作为对数的底数和真数,则所有不同对数值的个数为_答案17解析当所取两个数中含有1时,1只能作真数,对数值为0,当所取两个数不含有1时,可得到A20(个)对数,但log23log49,log32log94,log24log39,log42log93,综上可知,共有201417
18、(个)不同的对数值10(2016天津模拟)回文数是指从左到右与从右到左读都一样的正整数,如22,121,3 443,94 249等显然2位回文数有9个:11,22,33,99.3位回文数有90个:101,111,121,191,202,999.则(1)4位回文数有_个;(2)2n1(nN*)位回文数有_个答案(1)90(2)910n解析(1)4位回文数相当于填4个方格,首尾相同,且不为0,共9种填法,中间两位一样,有10种填法,共计91090(种)填法,即4位回文数有90个(2)根据回文数的定义,此问题也可以转化成填方格结合分步乘法计数原理,知有910n种填法11有一项活动需在3名老师,6名男
19、同学和8名女同学中选人参加(1)若只需一人参加,有多少种不同选法?(2)若需一名老师,一名学生参加,有多少种不同选法?(3)若需老师,男同学,女同学各一人参加,有多少种不同选法?解(1)只需一人参加,可按老师,男同学,女同学分三类各自有3,6,8种方法,总方法数为36817. (2)分两步,先选教师共3种选法,再选学生共6814(种)选法,由分步乘法计数原理知,总方法数为31442. (3)教师,男同学,女同学各一人可分三步,每步方法依次为3,6,8种由分步乘法计数原理知总方法数为368144(种)12如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可
20、供使用,求不同的染色方法种数解方法一设想染色按SABCD的顺序进行,对S,A,B染色,有5360(种)染色方法由于C点的颜色可能与A同色或不同色,这影响到D点颜色的选取方法数,故分类讨论:C与A同色时(此时C对颜色的选取方法唯一),D应与A(C),S不同色,有3种选择;C与A不同色时,C有2种可选择的颜色,D也有2种颜色可供选择从而对C、D染色有13227(种)染色方法由分步乘法计数原理,不同的染色方法种数为607420.方法二根据所用颜色种数分类,可分三类第一类:用3种颜色,此时A与C,B与D分别同色,问题相当于从5种颜色中选3种涂三个点,共A60(种)涂法;第二类:用4种颜色,此时A与C,
21、B与D中有且只有一组同色,涂法种数为2A240(种);第三类:用5种颜色,涂法种数共A120(种)综上可知,满足题意的染色方法种数为60240120420.*13.已知集合M3,2,1,0,1,2,若a,b,cM,则:(1)yax2bxc可以表示多少个不同的二次函数?其中偶函数有多少个?(2)yax2bxc可以表示多少个图象开口向上的二次函数?解(1)a的取值有5种情况,b的取值6种情况,c的取值有6种情况,因此yax2bxc可以表示56180(个)不同的二次函数若二次函数为偶函数,则b0,故有5630(个)(2)yax2bxc的图象开口向上时,a的取值有2种情况,b、c的取值均有6种情况,因此yax2bxc可以表示2672(个)图象开口向上的二次函数
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1