1、(1)求这条抛物线对应的函数表达式;(2)问在y轴上是否存在一点P,使得PAM为直角三角形?若存在,求出点P的坐标;若不存在,说明理由(3)若在第一象限的抛物线下方有一动点D,满足DAOA,过D作DGx轴于点G,设ADG的内心为I,试求CI的最小值6(2019年南充中考题)如图,矩形硬纸片ABCD的顶点A在y轴的正半轴及原点上滑动,顶点B在x轴的正半轴及原点上滑动,点E为AB的中点,AB24,BC5给出下列结论:点A从点O出发,到点B运动至点O为止,点E经过的路径长为12;OAB的面积最大值为144;当OD最大时,点D的坐标为(,)其中正确的结论是 (填写序号)7(2019年自贡中考题)如图,
2、已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x5和x轴上的动点,CF10,点D是线段CF的中点,连接AD交y轴于点E,当ABE面积取得最小值时,tanBAD的值是()A B C D8(2019年陕西中考题)问题提出:(1)如图1,已知ABC,试确定一点D,使得以A,B,C,D为顶点的四边形为平行四边形,请画出这个平行四边形;问题探究:(2)如图2,在矩形ABCD中,AB4,BC10,若要在该矩形中作出一个面积最大的BPC,且使BPC90,求满足条件的点P到点A的距离;问题解决:(3)如图3,有一座草根塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形
3、的草根景区BCDE根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,CBE120,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由(塔A的占地面积忽略不计)9(2019年广州中考题)如图,等边ABC中,AB6,点D在BC上,BD4,点E为边AC上一动点(不与点C重合),CDE关于DE的轴对称图形为FDE(1)当点F在AC上时,求证:DFAB;(2)设ACD的面积为S1,ABF的面积为S2,记SS1S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时求AE
4、的长10(2019年连云港中考题)问题情境:如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N判断线段DN、MB、EC之间的数量关系,并说明理由在“问题情境”的基础上,(1)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F求AEF的度数;(2)如图3,当垂足P在正方形ABCD的对角线BD上时,连接AN,将APN沿着AN翻折,点P落在点P处若正方形ABCD的边长为4 ,AD的中点为S,求PS的最小值问题拓展:如图4,在边长为4的正方形ABCD中,点M、N分别为边AB、CD上的点,将
5、正方形ABCD沿着MN翻折,使得BC的对应边BC恰好经过点A,CN交AD于点F分别过点A、F作AGMN,FHMN,垂足分别为G、H若AG,请直接写出FH的长11(2019年益阳)如图,在平面直角坐标系xOy中,矩形ABCD的边AB4,BC6若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动(1)当OAD30时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cosOAD的值12(2019年衡阳)
6、如图,在等边ABC中,AB6cm,动点P从点A出发以lcm/s的速度沿AB匀速运动动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动设运动时间为以t(s)过点P作PEAC于E,连接PQ交AC边于D以CQ、CE为边作平行四边形CQFE(1)当t为何值时,BPQ为直角三角形;(2)是否存在某一时刻t,使点F在ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;(3)求DE的长;(4)取线段BC的中点M,连接PM,将BPM沿直线PM翻折,得BPM,连接AB,当t为何值时,AB的值最小?并求出最小值13(2019年台州)如图,直线l1l2l3,A
7、,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若ABC90,BD4,且,则m+n的最大值为 变式:若ABC=60呢?14(2019年宿迁中考题)如图,在钝角ABC,ABC=300,AC=4,点D为边AB中点,点E为边BC中点,将BDE绕B逆时针方向旋转度。(1)如图,当0a1800时,连接AD、CE。求证BDABEC(2)如图,直线CE、AD交于G。在旋转过程中,AGC的大小是否发生变化?如变化,请说明理由;如不变,请求出这个角的度数;(3)将BDE从图位置绕点B逆时针方向旋转1800,求
8、点G的运动路程.15(2019年赤峰市中考题)【问题】如图1,在RtABC中,ACB90,ACBC,过点C作直线l平行于ABEDF90,点D在直线l上移动,角的一边DE始终经过点B,另一边DF与AC交于点P,研究DP和DB的数量关系【探究发现】(1)如图2,某数学兴趣小组运用“从特殊到一般”的数学思想,发现当点D移动到使点P与点C重合时,通过推理就可以得到DPDB,请写出证明过程;【数学思考】(2)如图3,若点P是AC上的任意一点(不含端点A、C),受(1)的启发,这个小组过点D作DGCD交BC于点G,就可以证明DPDB,请完成证明过程;【拓展引申】(3)如图4,在(1)的条件下,M是AB边上
9、任意一点(不含端点A、B),N是射线BD上一点,且AMBN,连接MN与BC交于点Q,这个数学兴趣小组经过多次取M点反复进行实验,发现点M在某一位置时BQ的值最大若ACBC4,请你直接写出BQ的最大值一题多解16(2019年乐山中考题)如图,抛物线yx24与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连结OQ则线段OQ的最大值是()A3 B D417(2019年桂林)如图,在矩形ABCD中,AB,AD3,点P是AD边上的一个动点,连接BP,作点A关于直线BP的对称点A1,连接A1C,设A1C的中点为Q,当点P从点A出发,沿边AD运动到点D时停止运动,
10、点Q的运动路径长为 18(2019年贵阳)如图,在矩形ABCD中,AB4,DCA30,点F是对角线AC上的一个动点,连接DF,以DF为斜边作DFE30的直角三角形DEF,使点E和点A位于DF两侧,点F从点A到点C的运动过程中,点E的运动路径长是 19.(2019年宿迁中考题)如图正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边EFG,连接CG,则CG的最小值为 .20(2019年泰安中考题)如图,矩形ABCD中,AB4,AD2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A2 B4 C21(2019
11、年淮安中考题)如图,在ABC中,ABAC3,BAC100,D是BC的中点小明对图进行了如下探究:在线段AD上任取一点P,连接PB将线段PB绕点P按逆时针方向旋转80,点B的对应点是点E,连接BE,得到BPE小明发现,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧请你帮助小明继续探究,并解答下列问题:(1)当点E在直线AD上时,如图所示BEP50;连接CE,直线CE与直线AB的位置关系是ECAB(2)请在图中画出BPE,使点E在直线AD的右侧,连接CE试判断直线CE与直线AB的位置关系,并说明理由(3)当点P在线段AD上运动时,求AE的最小值22(2019年湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是矩形,点A,C分别在x轴和y轴的正半轴上,连结AC,OA3,tanOAC(1)求OC的长和点D的坐标;(2)如图2,M是线段OC上的点,OMOC,点P是线段OM上的一个动点,经过P,D,B三点的抛物线交x轴的正半轴于点E,连结DE交AB于点F将DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时BF的长和点E的坐标;以线段DF为边,在DF所在直线的右上方作等边DFG,当动点P从点O运动到点M时,点G也随之运动,请直接写出点G运动路径的长
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1