ImageVerifierCode 换一换
格式:DOCX , 页数:13 ,大小:102.57KB ,
资源ID:16167631      下载积分:12 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/16167631.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(粒度分析的基本原理Word文档下载推荐.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

粒度分析的基本原理Word文档下载推荐.docx

1、圆柱体积V1= 球体体积V2= 在这里X表示等体积半径。因为圆柱体积V1 = 球体体积V2, 所以X=这样等效球体的直径D2=2X=219.5=39um 。就是说,一个高100 um,直径20 um的圆柱的等效球体直径大约为40 um。下面的表格列出了各种比率的圆柱体的等效球径。圆柱尺寸比率等效球径高度底面直径204010020040010421:12:5:10:20:522.928.839.149.362.118.213.410.6最后一行表示大的圆盘状的粘土粒子,其直径为20 um,但由于厚度仅为0.2 um。一般来说,对其厚度不予考虑。在测粒子体积的仪器上我们得到的结果约为5 um。由此

2、可见不同的方法将产生截然不同的结果。另外还得注意,所有这些圆柱对于筛子来说都表现出相同的尺寸(体积),如果说25 um,则应表述为:“所有物质小于25 um”。而对于激光衍射来说,这些圆柱则被看作为不同的,因为它们具有不同的值。不同的技术如果我们在显微镜下观察一些颗粒的时候,我们可清楚地看到此颗粒的二维投影,并且我们可以通过测量很多颗粒的直径来表示它们的大小。如果采用了一个颗粒的最大长度作为该颗粒的直径,则我们确实可以说此颗粒是有着最大直径的球体。同样,如果我们采用最小直径或其它某种量如Feret直径,则我们就会得到关于颗粒体积的另一个结果。因此我们必须意识到,不同的表征方法将会测量一个颗粒的

3、不同的特性(如最大长度,最小长度,体积,表面积等),而与另一种测量尺寸的方法得出的结果不同。图3列出了对于一个单个的砂粒粒子,可能存在的不同的结果。每一种方法都是正确的,差别仅在于测量的是该颗粒其中的某一特性。这就好像你我测量同一个火柴盒,你测量的是其长度,而我则测其宽度一样,从而得到不同的结果。由此可见,只有使用相同的测量方法,我们才可能严肃认真地比较粉体的粒度,这也意味着对于像砂粒一样的颗粒,不能作为粒度标准。作为粒度标准的物质必须是球状的,以便于各种方法之间的比较。然而我们可以应用一种粒度标准,这一标准使用特殊的方法,这使得应用同一种方法的仪器之间可以相互比较。D4,3参数的物理意义设有

4、直径分别为1、2、3的三个球体,这三个球体的平均尺寸是多少?我们只须稍微考虑一下就可以说是2。这是我们把所有的直径相加并除以颗粒数量(n=3)得到的。在下式中,因为有颗粒的数量出现,所以更确切的说该平均值应叫做长度平均值。 平均值=在数学中,这样的数值通常称为D1,0,因为在等式上方的直径各项是d 1的幂,且在等式下方,没有直径项(d0)。假设我是一名催化剂工程师,我想根据表面积来比较这些球体,因为表面积越大,催化剂作用就越大。一个球体的表面积是4r2。因此,要根据表面积来比较,我们必须平方直径,而后被颗粒数量除,再开平方得到一个与面积有关的平均直径:这是一个数量-表面积平均值,它是将直径的平

5、方相加后除以颗粒数量得到的,因此在数学中这样的数值被称为D2,0,即分子是直径各项的平方和,分母无直径项(d0)。如果我是一名化学工程师,我想根据重量来比较各球体。记得球体的重量是:由式(7)可知,要得到与重量有关的平均径,必须用直径的立方除以颗粒数后再开立方。这是一个数量体积或数量/重量平均值,它是将直径的立方相加后除以颗粒数量得到的,即分子是直径各项的立方和,分母为颗粒的数量,无直径项(d0)。在数学术语中这被称为D3,0。对于这些简单的平均值D1,0,D2,0,D3,0,主要的问题是颗粒的数量是为公式所固有的,这就需要求出大量的颗粒的数量。通过简单的计算可以知道,在1克密度位2.5的二氧

6、化硅粉体中,假设颗粒尺寸都是1 u ,将会有大约760109颗粒存在。如此巨大数量的颗粒数是无法准确测量的,所以无法用上述方法计算颗粒的各种平均径。因此引入动量平均的概念,两个最重要的动量平均径如下: D3,2表面积动量平均径。 D4,3体积或质量动量平均径。这些平均径与惯性矩(惯性动量)相似,且在直径中引入另一个线性项(也就是说表面积与d3,体积及质量与d4有如下关系:D3,2 = 上述这些公式表明,(表面积或体积/质量的)分布围着频率的中点旋转。它们实际上是相应分布的重心。此种计算方法的优点是显而易见的:公式中不包含颗粒的数量,因此在不知晓相关颗粒数量的情况下,可以计算平均值及其分布。激光

7、衍射最初计算了围绕着体积项为基础的分布,这也是D4,3以显著的方式报告的原因。不同的技术提供了不同的手段如果我们用电子显微镜测量粒子,这就像我们用十字线来量直径,把这些直径相加后被粒子数量除,得到一个平均结果。我们可以看到,用这种方法我们得到D1,0,即长度平均值;如果我们得到颗粒的平面图像,通过测量每一颗粒的面积并将它们累加后除以颗粒数量,我们得到D2,0,即面积平均径;如果采用一种比如电子区域感应的方法,我们就可以测量每一颗粒的体积,将所有颗粒的体积累加后除以颗粒的数量,我们得到D3,0,即体积平均径。用激光法可以得到D4,3,也叫体积平均径。如果粉体密度是恒定的,体积平均径与重量平均径是

8、一致的。由于不同的粒度测试技术都是对粒子不同特性的测量,所以每一种技术都很会产生一个不同的平均径而且它们都是正确的。这就难免给人造成误解和困惑。假设3个球体其直径分别为1,2,3个单位,那么不同方法计算出的平均径就大不相同:Xnl=D1,0 =Xns=D2,0 =Xnv=D3,0 = Xls=D2,1 = Xlv=D3,1 =Xsv=D3,2 =Xvm=D4,3 =数量及体积分布尺寸(cm)数量数量百分数重量百分数10-100070000.299.961-10175000.50.030.1-1350000099.30.01合计35245001991年10月13日在新科学家杂志中发表的一篇文章称

9、,在太空中有大量人造物体围着地球转,科学家们在定期的追踪它们的时候,把它们按大小分成几组,见表2。如果我们观察一下表2中的第三列,我们可正确地推断出在所有的颗粒中,99.3%是极其的小,这是以数量为基础计算的百分数。但是,如果我们观察第四列,一个以重量为基础计算的百分数,我们就会得出另一个结论:实际上所有的物体都介于10-1000cm之间。可见数量与重量(体积)分布是大不相同的,我们采用不同的分布就会得出不同的结论,而这些分布都是正确的,只是以不同的方法来观察数据罢了。举个例子,假设我们在做一件太空服,我们可以说抵御7000个大的物体的袭击是很容易的,它可应付所有这种袭击的99.96%。但对于

10、太空服更为重要的是应抵御在数量上占99.3%的小颗粒的袭击!如果我们用计算器计算以上分布的平均值,我们会发现数量平均直径约为1.6cm而质量平均直径为50cm ,可见两种不同的计算方法的差别很大。数量,长度,体积平均径之间的转换如果我们用电子显微镜测量颗粒,我们从前面的讨论知可以得到D1,0或叫做数量长度平均径。如果我们确实需要质量或体积平均径,则我们必须将数量平均值转化成为质量平均值。以数学的角度来看,这是容易且可行的,但让我们来观察一下这种转换的结果。假设我们的电子显微镜测量数量平均径时的误差为3%,当我们把数量平均径转换成质量平均径时,由于质量是直径的立方函数,则最终质量平均径的误差为2

11、7%。但是如果我们像对激光衍射那样来计算质量或体积分布,则情况就不同了。对于被测量的在悬浮液中重复循环的稳定的样品,我们得出0.5%重复性误差的体积平均径。如果我们将它转换为数量平均,则数量的平均径误差是0.5%的立方根,小于1.0%。在实际应用中,这意味着如果我们用电子显微镜且我们真正想得到的是体积或质量分布,则忽略或丢失1个10u粒子的影响与忽略或丢失1000个1u粒子的影响相同。由此我们必须意识到这一转换的巨大的危险。在Malvern Sizers 这种型号的仪器中,DOS系统与Windows软件都可计算其它导出的直径,但我们必须在怎样解释这些导出的直径方面很谨慎。依据以下的等式(Hat

12、ch-Choate转换)(参考7),不同的平均值可互相转换。(计算方法略)测量粒径与导出粒径我们已看到,Malvern激光衍射技术是分析光能数据来得出颗粒体积分布(对于弗朗和费理论,投影面积分布是假定的)。这一体积分布就像以上所列的那样可转换成任何一个数量或长度直径。但是在任何一个分析方法中,我们必须意识到这种转换的结果(见上一段“数量,长度,体积/质量平均数之间的转换”)哪个平均径是由仪器实际测量的,哪些是由测量值导出的。相对于导出的直径,我们应更相信所测直径。实际上,在一些实例中,完全依靠导出数据是很危险的。例如,Malvern激光粒度仪以m2/cc或m2/kg的形式给出了比表面积。但对于

13、该值我们不能太当真。如果我们确实需要得到物质的比表面积,那么我们就应该用直接测量比表面积的具体的方法,如B.E.T法等去直接测量。我们用哪个数?每一个不同的粒度测量方法都是测量粒子的一个不同的特性(大小)。我们可以根据多种不同的方法得到不同的平均结果(如D4,3,D3,2 等),那么我们应该用什么数字呢?让我们举一个简单的例子,两个直径分别为1和10的球体,对冶金行业,如果我们计算简单的数字平均直径,我们得到的结果是:D(1,0)=(1+10)/2=5.5。但是如果我们感兴趣的是物质的质量,我们知道,质量是直径的三次函数,我们就发现直径为1的球体的质量为1,直径为10的球体的质量为1000。也

14、就是说,大一些的球体占系统总质量的1000/1001。在冶金上我们可以丢掉粒径为1的球体,这样我们只会损失总质量的0.1%。因此简单的数字平均不能精确的反映系统的质量,用D4,3能更好地反映颗粒的平均质量。在我们上述的两个球体例子中,质量或体积动量平均径计算如下:D(4,3)= 该值能比较充分地表示系统的质量更多的存在哪里,这对一些行业非常重要。但是对于一间制造大规模集成电路的洁净的屋子来说,颗粒的数量或浓度就是最重要的了,一个颗粒落在硅片上,就将会产生一个疵点。这时我们就要采用一种方法直接测量粒子的数量或浓度。从本质上说,这是颗粒计数与测量颗粒大小之间的区别。对于颗粒计数来说,我们记录下每一

15、个颗粒并且点出数量就可以了,颗粒的大小不太重要;对于测量颗粒大小来说,颗粒的大小或分布是我们关心的,颗粒的绝对数量并不重要。平均径、中值粒径、最频值 一 基本统计定义这三个术语是很重要的,它们在统计及粒度分析中常常被用到。平均径:这是表示颗粒平均大小的数据。有很多不同的平均值的算法,如D4,3等。中值:也叫中位径或D50,这是一个表示粒度大小的典型值,该值准确地将总体划分为二等份,也就是说有50%的颗粒超过此值,有50%的颗粒低于此值。最频值:这是频率分布的最通用的值,也就是说频率曲线的最高点。设想这是一般的分布或高斯分布。则平均值,中值和最频值将恰好处在同一位置,如图4。但是,如果这种分布是

16、如图5所示的双峰分布。则平均直径几乎恰恰在这两个峰的中间。实际上并不存在具有该粒度的颗粒。中值直径将位于偏向两个分布中的较高的那个分布1%,因为这是把分布精确地分成二等份的点。最频值将位于较高曲线的顶部。由此可见,平均值、中值和最频值有时是相同的,有时是不同的,这取决于样品的粒度分布的形态。注意,在Malvern分析表中: D4,3 是体积或质量动量平均值。 DV,0.5 是体积(v)中值直径,有时表示为D50或D0。5。 D3,2 是表面积动量平均值。测量方法从以前几段中我们看到,每一种测量技术都将的到不同的结果,因为它测量该颗粒的不同方面。我们现在讨论当前应用的几种不同测量方法的相对的优缺

17、点。筛分法这是一种古老的方法,其优点是成本低,使用容易等。.艾伦在颗粒大小测定一书中讨论了重复筛分方面的困难,对于很多用户来说筛分法的主要缺点如下: 不能测量射流或乳浊液; 对小于目(u)的干粉很难测量。 测量时间越长,得到的结果就越小,这是因为颗粒不断调整他们自己来通过筛孔,所以要得到一致的结果,必须使测量次数及操作方法标准化。 筛分法是依赖于测量颗粒的次最小尺寸的,无法得到一个真正的重量分布。在测量杆状物质时这会导致一些奇怪的结果,如对药品扑热息痛的测量就是这样。 标准允许的公差较大。比较(美国材料实验协会)或(英国工业标准)的标准筛尺寸表格可见允许的公差在平均及最大值之间的差距较大,了解

18、这些情况对使用筛分法及分析测试结果具有指导意义。沉降法这是在油漆及陶瓷等工业中应用的一种传统的测量方法,这种测量的原理是以tokes定律为基础:沉降速度Vs=该类设备有象移液管一类的简单的装置,也有带离心机或以射线做光源的复杂一些的装置。对等式18的研究我们可以发现它的缺陷:它需要知道物质的密度,因而这种方法对乳浊液不适合,因为在乳浊液中物质不沉淀,或者密度较大的颗粒沉淀得很快。最终结果是一个与重量直径(,)不同的tokes直径(),且只是具有相同沉淀率的颗粒与球体的比较。在分母中的粘度项表明我们须精确地控制温度变化,温度改变,粘度将会改变。这一等式可容易地计算出沉降时间。可以看出,在的水中,

19、微米的iO2颗粒(密度为2.5)在重力的作用下要经过.小时沉淀厘米。因而该测量进行得很缓慢且还要面临乏味的重复测量。因此考虑到增大g以尽量补救这一缺点。在参考3中讨论了关于增大g的不利条件。关于沉降方法更多具体的批评见参考。tokes定律仅适用于那些具有一定特性的球体,这些特性是:这些球体相对于其体积或表面积具有最紧凑的形状。而具有不规则形状的普通粒子的表面积比球体的表面积大,因而增加了阻力而比他们的等效球体沉降得更慢。布朗运动位移与重力沉降位移比较(见下表):在1秒内的位移(微米)在华氏70度空气中(标准大气压)在华氏70度水中在华氏70度空气中粒径由于布朗运动由于重力rK=100r(%)0

20、.100.250.501.002.5010.029.414.28.925.913.581.751.736.3019.969.615502.361.491.0520.7450.3340.2360.0050.03460.13840.55413.8455.431.13.150.5560.09830.009950.0003196.975.935.75.01.0对于像高岭土那样呈圆盘形状的物体,情况就更为严重,实际相比会产生很大的偏差。另外对于小的颗粒来说,同时存在重力沉降与布朗运动两种运动状态。由上方的表格列出了这两种运动状态的对比可知,如果用沉降法测量小于2um的颗粒,我们会看到很大的误差(大约为2

21、0%)并且对于0.5um的颗粒来说,误差甚至会超过100%。沉降法的缺点如下: 测量速度慢,平均测量时间为25分钟至1小时,测量时间长使得重复测量更加困难,而且增大了颗粒重新聚合的机会。 需要精确的温度控制,需要防止温度变化导致粘度变化。 不能处理不同密度的混合物。 动态测量范围小。当颗粒小于2um时,布朗运动起支配作用(占优势);当大于50um时,沉降变得剧烈以至颗粒不是按照tokes定律的规律运动。图6还表明一些在沉降法与激光衍射法所得到的结果之间可能的差异。电区感应(Coulter 计数器)这种技术在20世纪50年代中期发明的,最早用来测量血球的大小。这些血球实际上是呈单模态悬浮在稀释的

22、电解溶液中。此法原理很简单。在电解溶液中放置一个有小孔的玻璃器皿,使稀释的悬浮液流过该小孔,在小孔两端施加电压。当粒子流过孔洞时,电阻发生了变化,产生电压脉冲。在仪器上测量该脉冲的峰值的高度,然后与标准颗粒的脉冲峰高比较,从而得到被测颗粒的大小。因此这种方法不是一个绝对的方法,它是有比较性质的。对于血球而言,此种方法是最好不过的,它能得出数量及体积分布,对于工业材料来说此法则存在着如下缺陷: 很难测量乳浊液(射流就更不可能了)。干粉则须悬浮在介质中,因此也不能直接测量。 必须在电解质溶液中测量。对于有机物质这很难,因为不可能在二甲苯,丁醇,及其它的导电性很差的溶液中测量。 此方法需要一些校准标

23、准,而这些标准昂贵且在蒸馏水及电解质溶液中改变了他们的大小(参考2)。 对于有着相对宽广的粒度分布的物质来说,此种方法进行缓慢,因为必须改变小孔的大小且存在着阻塞小孔的危险。 此测量方法的最低限度由可能的最小的孔径所限制,当孔径低于约2um时测量起来很难。所以不可能以0.2um的孔径来测量更细的颗粒比如TiO2颗粒。 测量多孔的粒子时会得出很大的误差,由于被测量的是粒子的外壳尺寸。 密度较大的物质很难通过小孔,因为他们在此前就已沉降了。综上所述,这种方法适用于血球的粒度分析,对很多工业物质来说是不可靠的。显微镜检测法这是一个很好的方法,因为它使人们得以直接观察颗粒的形状,并可以据此判断分散的效

24、果是否良好或者颗粒有无聚合现象。有趣的是1g密度为2.5,粒度为10um的粒子竟含有760106个颗粒,这么多的颗粒我们不可能用显微镜一个一个地单独观察它们。但是,当质量或生产控制仅仅依赖上述的简单判断,这是不合适的。相对来说,我们仅可以观察到很少的颗粒,如果以这种非代表性的结果为依据确实是很危险的。另外,如果测量重量分布则误差会更大,因为忽略1个10um的粒子与忽略1千个1um的粒子产生的影响是一样的。电子显微镜有着复杂的样品制备,因此很慢。人工操作的显微镜,只能观察到为数很少的颗粒(一个优秀的操作人员一天大约可以观察2000个颗粒)。但操作人员极易疲劳,这又是“要测量哪一方面?”的问题了。

25、所以在测量同一样品时操作者与操作者之间的变化性很大。对颗粒的形状表征来说,显微镜检测法仍不失为一个有用的帮助。激光衍射法称之为小角度激光散射(LALLS)会更准确。在很多表征及质量控制工业中,此法已经成为首选的粒度测试方法。根据ISO13320其应用范围是0.13000um。在过去的大约20多年里,在这一领域中,该仪器也有了长足的发展。这种方法依据这一现象:衍射角与粒度成反比。该仪器包括如下部件: 激光器:经常用到He-Ne气体激光器,作为持续的、具有固定波长( =0.63um)的光源。因为其稳定性(特别对温度来说)好且在噪音的影响下可以比更高波长的激光二级管得到更好的信号。如果较小的激光二级

26、管可达到600nm或小于600nm,且更为可靠,较为庞大的气体激光器就会被其取代。 相配的探测器。通常是一片带有很多单个探测元件的硅光电探测器。最理想的探测原件的数量是16-32个,太多的元件数量不一定就会提高分辨率。光子相关光谱学技术(PCS)应用在大约1nm-1um的范围时,被散射的光的强度很低,需要用光电倍增器与信号校正器来感知信号。 使样品通过激光束的一些方法,在实际应用中,可以直接测量汽溶胶射流(把它们喷过光束),这使在传统意义上很困难的测量过程变得非常简单。干粉可以通过压力吹过光柱后被吸入真空清洁器以免尘粒逸入大气。处在悬浮液中的颗粒可以通过在光束前方重复循环来测量。落后一些的设备

27、及现在的仪器都只依据弗朗和费近似法,此法假设:(1)粒子比所应用的光的波长大许多(ISO13320将此定义为大于40 ,也就是,当使用He-Ne激光器时大25um)。(2)所有颗粒的散射效率相等。(3)颗粒是不透明的而且不会传导光。这些假设对于很多物质永远都是不正确的。对于小的颗粒会增大误差,以至于接近30%,特别是物质与介质的相对折射率接近于1且粒度接近光波长度时,散射就变成了存在最大值与最小值之间的复杂函数。最新式的仪器(如Malvern 生产的Mastersize2000仪器)充分地利用了米氏理论解了光与物质之间相互作用的方程。这使得在很大的粒度范围内,测试结果都很精确(典型的是0.022000um)。米氏理论与费氏理论不一样,它把颗粒的体积假想为所预测的投影面积。这种方法虽然精确但缺点是须知道物质及介质的折射率,并且应知道或者猜出折射率中的吸收部分。但对于大多数用户来说,这不会带来困难,因为这些值已为人们普遍了解或可测量出来。激光衍射为最终用户提供了以下

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1