ImageVerifierCode 换一换
格式:DOCX , 页数:10 ,大小:37.69KB ,
资源ID:16156196      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/16156196.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(超高层建筑结构设计注意事项Word文档下载推荐.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

超高层建筑结构设计注意事项Word文档下载推荐.docx

1、 重力荷载迅速增大 随着建筑物高度的不断增加重力荷载呈直线上升,作用在竖向构件柱、墙上的轴压力增加,对基础承载力的要求也更加提高。 控制建筑物的水平位移成为主要矛盾 风作用效应加大 风是引起结构水平位移的主要因素,决定风载标准值()大小的各参数随着建筑物高度的增加发生如下变化:只与建筑物的平面形状有关,基本不变;变化不大(总趋势随高度增加会减小,但变化幅度不大);取值较普通结构增大许多(超高层建筑属于特别重要的结构,对风作用相当敏感,应按n=100年,甚至n=200年的重现期采用);在梯度风高度范围内呈上升趋势(以地面粗糙程度C类为例,建筑物高度从100m增加到400m,抛增大约184倍,因此

2、,作用在建筑物上的风载沿高度方向呈倒三角形状或抛物线状。建筑物越高,风合力就越大,合力作用点位置就越高,对建筑物产生的作用效应(如建筑物底部总剪力、总弯矩、楼层层间位移角、顶层最大水平位移值等)也越大。 地震作用效应加大 多遇地震下对建筑物进行弹性分析计算时,建筑物高度的增加使结构自重增加、重心位置提高,地震作用产生的水平剪力和竖向力增大、作用位置提高,整个结构内力增加;在罕遇地震作用下将导致薄弱部位的加速破坏。 P效应成为不可忽视的问题 超高层建筑高宽比较大,侧向刚度相对较弱,水平位移量大,重力与水平位移所产生的附加弯矩常常大于初始弯矩的10%,必须考虑重力二阶P效应。 竖向构件产生的缩短变

3、形差对结构内力的影响增大竖向构件的总压缩量主要由受力变形、干缩变形和徐变变形三部分组成,对于全钢结构仅需考虑受力变形产生的缩短影响,对于钢混结构、钢组合结构、混凝土结构必须考虑干缩缩短和徐变缩短的影响。一般受力变形瞬时完成,其变形量可用胡克定律作近似计算;干缩变形完成的时间较长,据资料统计约为总压缩量的30;徐变变形完成的时间更长,线性徐变可由公式简单计算;构件的总压缩量随着构件的高度、平均压应力=NA的增加而加大。超高层建筑的竖向构件不但H和较大,而且构件之间的压应力差也较大,因此设计中除了通过控制轴压比使竖向构件之间的压应力较接近外,对钢筋混凝土结构采取逐步将各层柱顶找平后再进行下一道工序

4、的施工办法来减小变形差;对钢结构采取预留柱、墙压缩量的方法来减小变形差;总体结构分析时采取模拟施工方法,减小变形差对内力计算的影响。 倾覆力矩增大,整体稳定性要求提高建筑物高度的增加使得侧向力引起的倾覆力矩增大,抗倾覆要求提高。实际工程中常常采取增加基础埋深、加大基础宽度或采用抗拔桩基等措施来满足整体稳定性要求。 防火、防灾的重要性凸现超高层建筑多采用钢混结构和钢结构,而钢材耐热不耐火的特性更易加重某些次生灾害的发生,例如美国世贸中心的倒塌。一般紧急情况下高楼所需要的疏散时间较长,从顶层飞机救援的行动也常会受到各方面因素的制约,使得实施比较困难,因此防火、防灾的设计更为重要,目前关于防灾方面的

5、具体要求我国还没有相应的规程可循。 建筑物的重要性等级提高超高层建筑常作为当地的标志性建筑,资金投人大,在政治、经济、文化中所起的作用重大,破坏影响较大、波及范围较广,不论其建筑类别均属于重要建筑,因此结构设计的可靠度要提高,一般情况下重要性系数取,特殊情况下也可取。 控制风振加速度符合人体舒适度要求超高层建筑风振作用效应明显,风作用下的顶层加速度直接影响到室内人体的舒适度,实现良好的使用条件要求必须控制顶层的最大加速度满足规程2的限值,同时还要控制由风振引起的扭转加速度,一般不宜超过 rad。 围护结构必须进行抗风设计建筑物高度的增加使得垂直于围护结构表面上的风载标准值也迅速增大,因此必须对

6、围护结构进行抗风设计。如采用玻璃幕墙围护,则其风载更大(取值时,将10min平均风速转换为3s阵风风速计算,须采用结构玻璃满足强度要求,铝合金龙骨满足变形要求。三、结构设计方法 减轻自重。减小地震作用采用高强轻质材料(如全钢结构、幕墙围护、轻质隔断等),减轻结构自重,减小地震作用。 降低风作用水平力减小迎风面积正方形平面形式,横向迎风面最小;如计算对角线方向的迎风面宽,则圆形平面最小;在立面上适当位置开洞泄风(如上海环球金融中心大厦围),风力降低更直接。 降低风力形心采用下大上小的立面体型,既减小高风压在高处的迎风面积,又降低风作用重心,使建筑物底部的倾覆总弯矩减小。同时下大上小的立面体型对建

7、筑底部来说增大了抵抗矩,提高了稳定性,如巴黎的埃菲尔铁塔。 选用体型系数较小的建筑平面形状体型系数从小到大可选用下列平面顺序:圆形平面正多边形平面正方形平面,采用流线光滑的外形,避免凹凸多变的建筑形式,减小整体和局部风压的体型系数。 减少振动。耗散输入能量 采用阻尼装置或加大阻尼比,减少振动影响,如台北国际金融中心大厦。选用耗能、减振的结构体系,如采用偏心支撑的钢结构具有耗能的水平段,采用橡胶支座可以减振等。34加强抗震措施 选用规则结构使建筑物具有明确的计算简图,合理的地震作用传递途径同。如采用圆形、正多边形、正方形等平面形状,可以使整体结构具有多向同性,避免强弱轴的抗力不同和变形差异。功能

8、复杂的建筑常常是多种结构体系的综合,具体设计时应注意以下问题。(1)结构平面形状尽可能对称。由于地震作用的方向具有随机性,风作用虽有主导方向,但最大值也具有随机性,因此选用具有对称性、多向同性布置的抗侧力结构体系,有利于形心和刚心的重合。(2)竖向构件尽可能连续,避免抗侧力构件的间断,从而形成薄弱层、薄弱部位,对抗震不利。(3)设置多道抗震防线,满足“大震不倒”的抗震设防要求。(4)增加超静定次数,增加重要构件的传力线路,提高结构的抗震能力。赘余度的增多,可以使结构有更多的部位有机会形成塑性铰,吸收更多的地震能量。(5)在满足强度、刚度要求的前提下,选择具有较好延性的结构材料,增加总体变形能力

9、,增加结构耗能。(6)建立整体屈服机制,避免失稳破坏,并做到强柱弱梁、强剪弱弯、强节点弱构件、强埋件弱连接设计;对容易失稳的结构,做到强支撑;对受弯构件,做到强压弱拉等。 采用多个权威程序(如SATWE、TAT、SAP2000等)进行计算比较,通过动力时程分析,验证薄弱部位;对重要构件补充有限元分析计算,从而使计算的结论更为完整,结果更为可靠。 进行小模型风洞试验,获取有关风载作用参数;通过振动台试验,获取有关地震作用参数。 采用智能化设计,提高结构的可控性。应用传感器、质量驱动装置、可调刚度体系等和计算机共同组成主动控制体系,提供可变侧向刚度,控制结构的地震反应等。 提高节点连接的可靠度,如

10、钢结构节点的焊接处理,钢混结构中型钢、钢板与混凝土的连接等。超高建筑结构类型中的混合结构设计 混合结构的结构类型(1)钢框架钢筋混凝上核心筒(内外框梁为钢梁);(2)型钢混凝土框架钢筋混凝土核心筒(内外框梁为钢梁或型钢混凝上梁);(3)圆钢管(矩型钢管)混凝土框架钢筋混凝土核心筒; 上述三种混合结构类型,在超高层建筑结构设计中均有采用。从已建的工程来看,是后两种居多。从现有国家相关设计规程的规定,上述三种结构类型的房屋适用高度,当外框为钢框架时低于后两种,这主要是钢框架的刚度要低于后两种;当外框为框筒时,三种结构类型的房屋适用高度基本相同。这三种结构类型从施工上讲,主要问题是型钢混凝土柱的箍筋

11、要穿越型钢柱的腹板;尤其采用型钢混凝土梁,粱的纵筋要穿越柱的腹板或焊接在设置于型钢柱翼缘的钢牛腿上,而型钢柱的箍筋除穿越柱腹板外还要穿越型钢梁的腹板。总之,施工极不方便,这也就是在实际工程上一般不采用型钢混凝土梁而内外框梁采用钢梁的原因。另外,三种结构类型的用钢量也各不相同,如同处北京地区且房屋高度都在150m左右的国际贸易中心二期、财富中心一期及东直门交通枢纽双塔分别外框是:钢框架、型钢混凝土框架、圆钢管混凝土框架,内筒均是钢筋混凝土核心筒。其型钢用钢量分别约为、显然,它与全钢结构相比,即使加上钢筋用量后总用钢量也要低,相应总的工程费用也低。同时,由于混合结构的主要抗侧构件是钢筋混凝土核心筒

12、,其抗侧刚度大于钢支撑,这就是混合结构目前广泛用于超高层建筑结构的主要原因。 型钢混凝土和圆钢管混凝土柱钢骨含钢率的控制一般设计中都是构造控制,目前国内设计的技术规程有如下的规定:(1)高层建筑混凝土结构技术规程的第条中之4规定型钢含钢率,当柱轴压比大于时,不宜小于4;当柱轴压比小于时,不宜小于3。(2)型钢混凝土组合结构技术规程(国家行业标准)的第条规定,柱受力型钢的含钢率不宜小于4,且不宜大于lO(最近的规程修改将改为15)。(3)钢骨混凝土结构技术规程(冶金行业标准)的第条规定柱的钢骨含钢率,对于一二级抗震结构,不小于4;对于特一级抗震结构,不小于6:且不大于15。(4)高层建筑钢混凝土

13、混合结构设计规程的条规定,柱的钢骨含钢率,一级、二级、三级抗震等级,不应小于4:特一级抗震等级,不应小于6;四、高层建筑结构方案选择的主要考虑因素 抗震设防烈度是超高层结构体系选用首要考虑因素之一 现在的抗规和高规中已明确规定,结构体系的选用与抗震设防烈度相关。同时,从抗规和高规中规定的同一结构体系,对于房屋高度超过100m的高层建筑,不同的抗震设防烈度,房屋高度也是不相同的。很显然,抗震设防烈度6度最有利于建造超高层建筑,抗震设防度7度次之。而抗震烈度8度的高烈度区是不宜建造300m以上的超高层建筑的。因为地震作用太大,要满足三个水准的设防性能目标,其结构构件截面尺寸大,用材指标很高,并导致

14、工程造价也相当高。如一座房屋高度为150m的框架核心筒结构,抗震设防烈度6度区是高规中的A级高度房屋且为正常设计;而在抗震设防烈度8度区是高规中的B级高度房且高度还超限,需经抗震设防专限审查批准后方可进入正式设计。另外,在结构类型上,前者可采用钢筋混凝土结构,而后者则需采用混合结构。像这样的工程实例,如中国中元国际工程公司设计的重庆金融街金融中心和北京财富中心房屋高度近同,结果如上所述。 超高层建筑方案,应受到结构方案的制约 建筑专业是民用建筑设计中的龙头专业,一个具有较强建筑方案能力和有经验的建筑师,每一建筑方案都应考虑到结构,具有结构方案的可实施性。而对于超高层建筑方案更应首先就要考虑结构

15、方案的可行性,否则不是一个合理的建筑方案。所以,国外承担超高层建筑设计的事务所提出的每一个方案都要经过权威的结构顾问认可。对于我们国内设计单位来说,在建筑方案设计时应有结构专业的参与和配合。否则,有可能出现方案的大调整。 超高层建筑结构体系中结构类型的选择 拟建场地的岩土工程地质条件的影响。 一个拟建在基岩埋藏极浅场地上的超高层建筑,具有采用天然地基的条件。一般这样的场地其建筑场地类别为I类或II类,同时抗震设防烈度又低,故所采用的结构体系在高规规定的房屋高度范围内,则可优先考虑采用钢筋混凝土结构,如我国的重庆和青岛地区。而对在第四纪土层上的抗震设防烈度7度或8度区拟建的超高层建筑,为降低地震

16、作用,结构选型应考虑采用结构自重较轻的混合结构或钢结构。如在北京、上海等地区就不可能优先考虑选用钢筋混凝土结构。 抗震性能目标的影响。 前面所述超高层建筑结构设计都普遍存在结构超限,即超出我国现行抗规和高规的相关规定。一般抗震设计的性能目标要求竖向构件承载力达到中震不屈服或剪力墙底部加强区达到抗剪中震弹性,受弯及框架柱达到中震不屈服。显然,抗震设防烈度7度区、特别是8度区,钢筋混凝土结构就很难或不可能满足这一要求。所以,为减小结构自重在地震作用下产生的内力,应考虑选用混合结构或钢结构,这样即可以基本由型钢承担地震作用产生的剪力和拉力。否则,采用全钢筋混凝土的竖向构件则会因截面计算配筋量太大,导

17、致钢筋无法放置。若增大构件截面则结构自重加大,地震作用产生的结构内力也增大,仍然会使得截面配筋率很大,这在实际工程是无法实施的。 采用合理的结构类型,应考虑经济上的合理性。通常从工程造价上比较,钢筋混凝土结构最低,其次是混合结构,最高则是全钢结构。一般混合结构(指型钢混凝土柱、钢梁、钢筋混凝土核心筒)方案每平方米造价要高出钢筋混凝土结构约500元,而全钢结构每平方米要高出约1 000元以上。所以,超高层结构方案的采用应考虑有利于降低工程造价。另外,超高层建筑结构中的竖向承重构件由于截面积大而会使建筑有效的使用面积减小。采用型钢混凝土柱或圆钢管混凝土柱既可较大提高承载能力,而且延性好,尤其是柱截

18、面比钢筋混凝土柱减小近5006。因此,增大了有效使用面积,这对于工程造价格较高的超高层建筑来说经济效益得到了提高。所以,即使采用钢筋混凝土结构方案,为减小柱截面,也可在一定高度柱内设置型钢,这主要是为了获得较多的使用面积以提高经济效益。采用型钢混凝土柱或圆钢管混凝土柱、内外框钢梁和内设型钢的钢筋混凝土核心筒的这种混合结构,现在普遍被用于超高层建筑结构。因为此种结构相对全钢筋混凝土结构自重要小,特别是还具较大的结构刚度,在地震作用下结构易于满足设计要求,同时具有良好的消防防火性能,其综合经济指标较好。当然,也有一定数量的超高层建筑采用全钢结构,那是有其特殊原因,像中央电视台那样的怪异建筑它是无法

19、用混合结构来实现的。对于北京抗震设防烈度8度这样一种严重特别不规则结构,要保证结构自身的稳定性,就须结构自重轻、材料强度高,特别是部分构件始终处在受拉状态,只有采用全钢结构方可。它的用钢量达400kgm2,是房屋结构中最高的。因此,从结构上讲它不是一个合理的结构。 施工的合理的影响超高层建筑的房屋高度多在150m以上,一般整栋楼面积多近lOxl04或以上。众所周知,房屋高度愈高,施工难度愈大,施工周期也愈长。一般钢筋混凝土结构高层建筑出地面以上的楼层施工进度约每月4层;混合结构(型钢混凝土框架钢筋混凝土核心筒,内外框梁为钢梁)约每月5层6层;全钢结构约每月7层。显然,不同结构类型,施工进度各不

20、相同。因此,设计应根据不同的房屋高度和业主对工程施工进度的要求,综合考虑以选择合理的结构类型。另外,由于超高层建筑施工周期长,从文明施工和尽量减少对城市环境的不良影响,设计应考虑尽量减少现场混凝土的浇捣量,使部分结构构件能放在工厂加工制作,运到现场即可安装就位。同时在楼盖结构设计中考虑尽量做到减少模板作业而采用带钢承板的组合楼盖,这对于保证工程施工质量和加快施工进度是极其有效的措施。所以,抗震设防烈度7度以上地区、房屋高度在150m以上超高层建筑结构,采用上述所说的混合结构方案是合适的。甚至在有条件时,把型钢混凝土柱改为钢管混凝土柱可使施工速度更快。如采用型钢混凝土框架(内外框梁为钢梁)钢筋混

21、凝土核心筒结构,它在施工出地面后,中央核心筒可独立采用滑模施工,且可先于钢结构安装5层6层,随后进行3层型钢柱和钢梁的安装后,再进行型钢混凝土柱支模和浇注混凝土,接着铺设楼层钢承板和掷扎楼板钢筋并浇注混凝土。显然,采用钢承板的组合楼盖结构就基本没有模板作业了。采用这种结构形式,其施工速度无疑要快于钢筋混凝土结构。总之,对于超高层建筑结构选型除前面所说的因素外,施工的合理性也是设计要考虑的重要方面。五、关于结构的抗侧刚度问题 超高层建筑混合结构的钢筋混凝土核心筒体是整个结构的主要抗侧构件,所以简体的墙厚尤其是外侧墙厚,主要是由抗侧刚度要求决定。在高层或超高层建筑结构设计中,对于框架一剪力墙、框架

22、核心筒或筒体结构(包括钢筋混凝土或混合结构),高层建筑混凝土结构技术规程对此类结构都有明确规定:框架均应承担一定比例地震作用下产生的水平剪力。这一规定充分说明我们设计是采用双重抗侧体力系。所以,要求外框架或外框筒承担一定比例的水平剪力,就要求具有一定抗侧刚度。因此,外框柱截面的确定除满足承载力和轴压比外,其刚度在整体结构刚度设计中应予以充分考虑。在超高层建筑结构设计中,由于框架核心筒或筒中筒结构(钢筋混凝土或混合结构)的结构抗侧刚度有时不能满足变形要求,需要利用避难层或设备层在外框或外框筒周边设置环状桁架或同时设置水平伸臂桁架的加强层。采用这种桁架式的加强层可以减少结构刚度突变,同时又使外框架

23、或外框筒与核心筒紧密连接成一体,增大结构的抗侧刚度,满足结构的变形(层间位移)要求。对于外框柱与筒体的剪力墙间设置的水平伸臂桁架,应使设置水平伸臂桁架处简体的墙位与外框柱对应一致,水平伸臂桁架平面应与简体墙中心线重合,方能形成结构整体的抗侧刚度。在前述中的海口某工程的平面为熨斗形的方案中,其外框柱与简体剪力墙位互不对应。如要设置水平伸臂桁架就无法直接拉通相连,这对于提高结构整体的抗侧刚度将很不明显。因此,如需要设置则设计应在方案阶段考虑调整。六 超高层建筑结构的基础设计 超高层建筑一般多设二层或更多层的地下室,其基础的埋置深度均能满足稳定要求。而对于基岩埋藏较浅无法建造多层地下室不能满足埋置深

24、度要求的,则可设置嵌岩锚杆来满足稳定要求。其基础形式应据场地的岩土工程地质条件,在满足地基承载力的同时也满足沉降变形设计的要求。一般当基底砌置在第四纪冲、洪积的黏性土层或海相沉积的土层时,其地基承载力不能满足且地基刚度也不能满足变形要求,因此,需采用桩基方案。而房屋高度在150m左右且房屋楼层约40层左右的超高层建筑,当基底砌置在第四纪厚度较大且密实的砂、卵石层时,一般承载力特征值和压缩模量都很高,则可考虑采用天然地基方案。对于基底砌置在中风化或微风化的基岩上的情况,则无论房屋高度多大,均为天然地基方案。 天然地基基础。 上述两种情况下的天然地基方案,其基础形式是各不相同的。对于基底砌置在砂、

25、卵石层的基础,多是采用等厚板筏形基础。但也有工程采用箱形基础,主要利用作为消防水池,如155m高的北京国贸中心一期写字楼工程。由于该工程有3层地下室只是最下1层是箱基,而其他1层、2层不是,故总称为箱筏联合基础。等厚板筏基的板厚应具有较大的刚度,以使基底压力均匀分布以及减小外框(筒)和内筒的沉降变形差异,通常设计的等厚板筏基的板厚取外框和内筒之间跨度的14左右。而对于基底砌置在中风化或微风化的基岩上,由于基岩承载力特征值很高,则外框柱可采用独立基础,内筒可采用条形基础或等厚板筏形基础。如重庆地区某工程基底的中风化泥岩和中风化砂岩的承载力特征值分别为2650kPa和10380kPa,就可按上述的

26、基础形式进行设计。同时,由于中风化或微风化基岩刚度很大,荷载作用下沉降变形甚微,所以地下室底板厚可按构造设置或按岩石裂隙水的水浮力计算考虑。在基岩上的独立柱基础,一般为使施工开挖不破坏基岩的整体性,多采用人工挖孔桩的开挖方式施工。 桩基础设计。 超高层建筑的桩基础,由于基底压力大,要求的单桩竖向承载力较高,因此,均采用大直径钻孔灌注桩或有条件的工程场地采用大直径人工挖孔扩底灌注桩。桩端持力层的选择应考虑层厚较大和密实的砂、卵石层或中风化、微风化基岩,以减少桩端沉降变形。关于桩的布置总原则应集中布于柱下和墙下,但不同的桩型布桩的结果是各不相同的。如果设计采用的是端承桩或是摩擦端承桩,由于单桩竖向

27、承载力特征值很高,所需桩数要少,则可布于柱下和墙下:如果设计采用的是端承摩擦桩或摩擦桩,由于单桩竖向承载力特征值相对要低,则往往整个基底承台下需要满布桩方能满足设计承载力和变形控制的要求。上述两种不同的布桩方式,其桩承台板的厚度是各不相同的:布桩于柱下或墙下的承台厚度一般由冲切确定,且地下室的底板厚度可小于外框和内筒承台厚度,按构造或水浮力产生的底板内力计算要求确定;而对于满布桩的承台厚度应如同天然地基基础中的等厚板筏基一样,承台板应具有较大的刚度以使基底承台桩均匀受力,因此承台板的厚度一般不是由冲切确定。这种满布桩的等厚板承台的内力计算,可根据桩的单桩竖向承载力的实际平均反力并按刚性方案的倒

28、楼盖计算,这样是符合实际工程受力状态的。我国在20世纪80年代后期,为了提高钻孔灌注桩的竖向受压承载力,经过科学试验开始在工程上应用后注浆钻孔灌注桩并取得了很好的成果。这种后注浆钻孔灌注桩不仅单桩竖向承载力得到大幅度的提高,而且桩端沉降变形减小,在桩基工程中已被广泛采用。现有桩基设计规范对后注浆钻孔灌注桩单桩相对普通钻孔灌注桩的单桩竖向承载力提高系数已有明确规定,总体来说与各地岩上工程地质条件有关。像北京地区桩端持力层为卵石、园砾层,桩侧为黏性土层和砂卵石层,其提高值接近普通钻孔灌注桩的两倍,但必须是由具有后注浆技术资质的专业公司施工。从工程造价上讲,采用后注浆钻孔灌注桩总的工程费用可降低25%左右。因此,该桩型是超高层建筑桩基设计中采用的合理桩型。另外,关于钻孔灌注的成孔方法,以往均采用反循环钻机施工,而现在对于一定的桩长采用旋挖钻机,施工速度快,特别是桩端沉渣厚度很小甚至几乎没有,从而有效的保证了钻孔桩的施工质量。这种钻机是在工程实施中凡有条件应当优先采用的钻机。北京财富中心的1期、2期工程超高层写字楼和公寓楼全部采用后注浆钻孔灌注桩并采用旋挖钻机成孔,后注浆技术为中国建筑科学院地基基础研究所专利技术并由他们实施完成。该工程的主裙楼间虽荷载差异很大,设计中考虑到采用后注浆钻孔灌注桩均不设置沉降后浇带,建成投入使用后,地基差异沉降实测值均在设计允许范围之内并与

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1