1、美元。因此,钢筋混凝土结构耐久性问题是一个十分重要也是迫切需要加以解决的问题,通过开展对钢筋混凝土结构耐久性的研究,一方面能对已有的建筑结构物进行科学的耐久性评定和剩余寿命预测,以选择对其正确的处理方法;另一方面可对新建项目进行耐久性设计,揭示影响结构寿命的内部与外部因素,从而提高工程的设计水平和施工质量。因此,它既有服务于服役结构的现实意义,又有指导待建结构进行耐久性设计的理论意义,同时,对于丰富和发展钢筋混凝土结构可靠度理论也具有一定的理论价值。正因为混凝土结构耐久性的问题如此重要,近年来世界各国均越来越重视混凝土结构的耐久性问题,众多的研究者对混凝土结构耐久性展开了研究,取得了系列研究成
2、果,而材料层面的成果尤为显著。迄今为止,已经形成了混凝土结构耐久性研究框架,如图1-1 大气环境 材料层次冻融破坏混凝土结构耐久性 混凝土锈胀开裂模型构件层次粘结性能衰退模型 耐久性评估图1-1混凝土结构耐久性研究框架所示。本章将着重介绍混凝土结构耐久性研究中成熟的相关研究成果。1.2混凝土碳化1.2.1混凝土碳化的定义所谓混凝土的碳化是指空气中二氧化碳与水泥石中的碱性物质相互作用,使其成分、组织和性能发生变化,使用机能下降的一种很复杂的物理化学过程。影响结构耐久性的因素很多,其中混凝土碳化是一个重要的因素。通常情况下,早期混凝土具有很高的碱性,其PH值一般大于12.5,在这样高的碱性环境中埋
3、置的钢筋容易发生钝化作用,使得钢筋表面产生一层钝化膜,能够阻止混凝土中钢筋的锈蚀。但当有二氧化碳和水汽从混凝土表面通过孔隙进入混凝土内部时,和混凝土材料中的碱性物质中和,从而导致了混凝土的值的降低。当混凝土完全碳化后,就出现PH1这种情况,在这种环境下,混凝土中埋置钢筋表面的钝化膜被逐渐破坏,在其它条件具备的情况下,钢筋就会发生锈蚀。钢筋锈蚀又将导致混凝土保护层开裂、钢筋与混凝土之间粘结力破坏、钢筋受力截面减少、结构耐久性能降低等一系列不良后果。由此可见,进行混凝土的碳化规律分析,研究由碳化引起的混凝土化学成分的变化以及混凝土内部碳化的进行状态,对于混凝土结构的耐久性研究具有重要的意义。1.2
4、.2混凝土碳化的机理混凝土的基本组成是水泥、水、砂和石子,其中的水泥与水发生水化反应,生成的水化物自身具有强度(称为水泥石),同时将散粒状的砂和石子粘结起来,成为一个坚硬的整体。在混凝土的硬化过程中,约占水泥用量的三分之一将生成氢氧化钙(Ca(OH)2),此氢氧化钙在硬化水泥浆体中结晶,或者在其空隙中以饱和水溶液的形式存在。因为氢氧化钙的饱和水溶液是值为12.6的碱性物质,所以新鲜的混凝土呈碱性。然而,大气中的二氧化碳却时刻在向混凝土的内部扩散,与混凝土中的氢氧化钙发生作用,生成碳酸盐或者其它物质,从而使水泥石原有的强碱性降低,PH值下降到8.5左右。混凝土碳化的主要化学反应式如下:CO2+H
5、2OH2CO3(1-1)Ca(OH)2+H2CO3CaCO3+2H2O(1-2)1.2.3影响混凝土碳化的因素混凝土的碳化是伴随着CO2气体向混凝土内部扩散,溶解于混凝土孔隙内的水,再与各水化产物发生碳化反应这样一个复杂的物理化学过程。研究表明,混凝土的碳化速度取决于气体的扩散速度及与混凝土成分的反应性。而气体的扩散速度又受混凝土本身的组织密实性、CO2气体的浓度、环境湿度、试件的含水率等因素的影响。所以碳化反应受混凝土内孔溶液的组成、水化产物的形态等因素的影响。这些影响因素可归结为与混凝土自身相关的内部因素和与环境相关的外界因素。对于服役结构物来说,由于其内部因素已经确定,因此影响其碳化速度
6、的主要因素是外部因素,如的浓度、环境温度和湿度。概况地说,混凝土碳化的影响因素为:1. 混凝土本身的密实度:混凝土密实度越大,碳化速度越慢;2. 二氧化碳的浓度:二氧化碳浓度越大碳化速度越快比;3. 环境温度:环境温度越高,碳化速度越快;4. 环境湿度:环境相对湿度在5070时,碳化速度最快。1.2.4混凝土的碳化规律1.国内外学者对混凝土碳化进行了深入的研究,在分析碳化试验结果的基础上,国内外公认的碳化深度D与碳化时间t的关系式为:=(1-3)式中,为碳化速度系数;为混凝土碳化深度(mm);为测定的碳化时间(年)。碳化速度系数体现了混凝土的抗碳化能力,它不仅与混凝土的水灰比、水泥品种、水泥用
7、量、养护方法、孔尺寸与分布有关,而且还与环境的相对湿度、温度及二氧化碳浓度有关。2. 碳化规律应用1自然锈蚀和快速碳化之间的关系。D1 C1t1D2 C2t2式中, D1、D2分别为测得的和要预测的混凝土碳化深度;C1、C2D1和预测D2时的碳化浓度;t1、t2时的碳化时间。例1-1:某混凝土结构物在建造时,为了估计二氧化碳侵入混凝土结构的速度,预留了混凝土试块进行混凝土快速碳化试验。碳化箱浓度是结构物实际环境二氧化碳浓度的400倍,混凝土试块在放入碳化箱天后测得其碳化深度为10mm。试问:实际结构使用30年后的碳化深度。解:已知D1=10mm;t230365天;t1C2/C11/400;则:
8、10/(5400)=23.4(mm).3. 碳化规律应用2自根据实测碳化深度推测以后情况D1t2(1-5)时的碳化时间。1-2:某结构物使用年以后测其碳化深度为15mm,试问:该结构物使用年后的碳化深度。解:=15mm;年;=30则:D2=15(30/10)=26(mm).1.2.5碳化深度和混凝土强度之间的关系分析混凝土强度是确定混凝土结构构件抗力的基本参数,它随时间的变化规律是建立服役结构抗力变化模型的基础。一般来说,混凝土强度在初期随时间增大,但增长速度逐渐减慢,在后期则随时间下降。在对服役结构的抗力进行评价时,所关心的是结构在经过一个服役期后,混凝土强度是高于设计强度还是低于设计强度,
9、具体值又是多少,这些问题是服役结构抗力评价需要解决的问题。一般大气环境下混凝土的腐蚀主要是碳化腐蚀。碳化降低混凝土的碱性,随着时间的推移,碳化的发展使混凝土失去对钢筋的保护作用,从而引起钢筋锈蚀;另一方面,随着时间的变化,碳化对混凝土强度本身也有一定的影响。为了了解碳化后混凝土本身强度的变化,须进行了混凝土的抗压和劈拉试验。通过试验研究分析,有下列结论:随着碳化龄期的增长,混凝土的抗压强度也随之提高;同一龄期碳化试件的抗压强度均比未碳化试件的抗压强度高。从这一点来看,混凝土的碳化对抗压强度本身并没有破坏作用。1.3氯离子对混凝土结构的侵蚀我国海域辽阔,海岸线很长,大规模的基本建设都集中于沿海地
10、区,而海边的混凝土工程由于长期受氯离子侵蚀,混凝土中的钢筋锈蚀现象非常严重,已建的海港码头等工程多数都达不到设计寿命的要求。在我国北方地区,为保证冬季交通畅行,向道路、桥梁及城市立交桥等撒除冰盐,大量使用的氯化钠和氯化钙,使得氯离子渗入混凝土,引起钢筋锈蚀破坏。我国还有广泛的盐碱地,腐蚀条件更为苛刻。在1991年召开的第二届国际混凝土耐久性会议上,Mehta教授在混凝土耐久性五十年进展主旨报告中指出:“当今世界混凝土破坏原因,按重要性递减顺序排列是:钢筋锈蚀、冻害、物理化学作用。”而来自海洋环境和使用防冰盐中的氯离子,又是造成钢筋锈蚀的主要原因。1.3.1氯离子对混凝土的作用机理1.破坏钝化膜
11、水泥水化的高碱性使混凝土内钢筋表面产生一层致密的钝化膜。以往的研究认为该钝化膜是由铁的氧化物构成,最近研究表明,该钝化膜中含有Si-O键,对钢筋有很强的保护能力。然而,此钝化膜只有在高碱性环境中才是稳定的,当11.5时,钝化膜就开始不稳定;当9.88时,钝化膜生成困难或已经生存的钝化膜逐渐破坏。Cl是极强的去钝化剂,Cl进入混凝土到达钢筋表面,吸附于局部钝化膜处时,可使该处的值迅速降低,可使钢筋表面值降低到4以下,破坏了钢筋表面的钝化膜。2.形成腐蚀电池如果在大面积的钢筋表面上具有高浓度氯化物,则氯化物所引起的腐蚀可能使均匀腐蚀。但是,在不均质的混凝土中,常见的局部腐蚀。Cl对钢筋表面钝化膜的
12、破坏发生在局部,使这些部位露出了铁基体,与尚完好的钝化膜区域形成单位差,铁基体作为阳极而受腐蚀,大面积钝化膜区域作为阴极。腐蚀电池作用的结果使,在钢筋表面产生蚀坑,由于大阴极对应于小阳极,蚀坑发展十分迅速。3.去极化作用Cl不仅促成了钢筋表面的腐蚀电池,而且加速了电池的作用。Cl与阳极反应产物Fe2+结合生成FeCl2,将阳极产物及时地搬运走,使阳极过程顺利进行甚至加速进行。通常把使阳极过程受阻称作阳极极化作用,而加速阳极极化作用称作去极化作用,Cl正是发挥了阳极去极化作用。在氯离子存在的混凝土中,钢筋的锈蚀产物中是很难找到FeCl2存在,这是由于FeCl2是可溶的,在向混凝土内扩散时,遇到OH就能生成Fe(OH)2沉淀,再进一步氧化成铁的氧化物,就是通常说的铁锈。由此可见,Cl起到了搬运的作用,却并不被消耗,也就是说,凡是进入混凝土中的Cl,会周而复始的起到破坏作用,着也是氯离子危害的特点之一。4.导电作用腐蚀电池的要素之一是要有离子通路,混凝土中Cl的存在,强化了离子通路,降低了阴阳极之间的欧姆电阻,提高了
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1