ImageVerifierCode 换一换
格式:DOCX , 页数:19 ,大小:65.02KB ,
资源ID:16055442      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/16055442.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(一元二次方程定义Word格式文档下载.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

一元二次方程定义Word格式文档下载.docx

1、6已知x=2是一元二次方程x22mx+4=0的一个解,则m的值为()A2 B0 C0或2 D0或27已知关于x的一元二次方程x2+ax+b=0有一个非零根b,则ab的值为()A1 B1 C0 D2二、填空题(共16小题)8若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为9若x=1是一元二次方程x2+2x+a=0的一个根,那么a=10关于m的一元二次方程nm2n2m2=0的一个根为2,则n2+n2=11若一元二次方程ax2bx2015=0有一根为x=1,则a+b=12已知m=1是一元二次方程m2+am+b=0的一个根,则代数式a2+b2+2ab的值是13若x=1是关于x的一元二次方程

2、x2+3mx+n=0的解,则6m+2n=14一元二次方程(a+1)x2ax+a21=0的一个根为0,则a=15已知关于x的一元二次方程2x23kx+4=0的一个根是1,则k=16若正数a是一元二次方程x25x+m=0的一个根,a是一元二次方程x2+5xm=0的一个根,则a的值是17若关于x的一元二次方程x2+3x+a=0有一个根是1,则a=18已知x=1是关于x的方程2x2+axa2=0的一个根,则a=19已知x=3是方程x26x+k=0的一个根,则k=20已知关于x的方程x23x+m=0的一个根是1,则m=,另一个根为21若x=1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值

3、为22已知关于x的一元二次方程2x23mx5=0的一个根是1,则m=23已知关于x的方程x2+2x+k=0的一个根是1,则k=三、解答题(共2小题)24已知关于x的一元二次方程x2+x+m22m=0有一个实数根为1,求m的值及方程的另一实根25如图,在平面直角坐标系中,已知RtAOB的两直角边OA、OB分别在x轴、y轴的正半轴上(OAOB),且OA、OB的长分别是一元二次方程x214x+48=0的两个根线段AB的垂直平分线CD交AB于点C,交x轴于点D,点P是直线CD上一个动点,点Q是直线AB上一个动点(1)求A、B两点的坐标;(2)求直线CD的解析式;(3)在坐标平面内是否存在点M,使以点C

4、、P、Q、M为顶点的四边形是正方形,且该正方形的边长为AB长?若存在,请直接写出点M的坐标;若不存在,请说明理由21.1 一元二次方程参考答案与试题解析【考点】一元二次方程的解【分析】知道方程的一根,把该根代入方程中,求出未知量k【解答】解:由题意知,关于x的一元二次方程x2x+k=0的一个根是2,故42+k=0,解得k=2,故选A【点评】本题主要考查了方程的根的定义,把求未知系数的问题转化为解方程的问题,是待定系数法的应用【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值即用这个数代替未知数所得式子仍然成立因为x=3是原方程的根,所以将x=3代入原方程,即3

5、23k6=0成立,解得k=1故选:A【点评】本题考查的是一元二次方程的根即方程的解的定义【分析】将x=1代入到ax2+bx+5=0中求得a+b的值,然后求代数式的值即可x=1是一元二次方程ax2+bx+5=0的一个根,a12+b1+5=0,a+b=5,2013ab=2013(a+b)=2013(5)=2018【点评】此题主要考查了一元二次方程的解,解题的关键是把已知方程的根直接代入方程得到待定系数的方程即可求得代数式a+b的值【专题】待定系数法【分析】把x=2代入已知方程,列出关于p的一元一次方程,通过解该方程来求p的值一元二次方程x2+px2=0的一个根为2,22+2p2=0,解得 p=1C

6、【点评】本题考查了一元二次方程的解的定义能使一元二次方程左右两边相等的未知数的值是一元二次方程的解又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根【专题】计算题【分析】将x=2代入关于x的一元二次方程x2ax+a2=0,再解关于a的一元二次方程即可x=2是关于x的一元二次方程x2ax+a2=0的一个根,4+5a+a2=0,(a+1)(a+4)=0,解得a1=1,a2=4,B【点评】本题主要考查了一元二次方程的解的定义,解题关键是把x的值代入,再解关于a的方程即可【分析】直接把x=2代入已知方程就得到关于m的方程,再解此方程即可x=2是一元二次方程

7、x22mx+4=0的一个解,44m+4=0,m=2【点评】本题考查的是一元二次方程的根即方程的解的定义把求未知系数的问题转化为方程求解的问题【分析】由于关于x的一元二次方程x2+ax+b=0有一个非零根b,那么代入方程中即可得到b2ab+b=0,再将方程两边同时除以b即可求解关于x的一元二次方程x2+ax+b=0有一个非零根b,b2ab+b=0,b0,b0,方程两边同时除以b,得ba+1=0,ab=1【点评】此题主要考查了一元二次方程的解,解题的关键是把已知方程的根直接代入方程进而解决问题8若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为3【分析】将x=1代入方程得到关于m的方程,

8、从而可求得m的值将x=1代入得:1+2+m=0,解得:m=3故答案为:3【点评】本题主要考查的是方程的解(根)的定义,将方程的解(根)代入方程得到关于m的方程是解题的关键9若x=1是一元二次方程x2+2x+a=0的一个根,那么a=3【分析】根据方程的根的定义将x=1代入方程得到关于a的方程,然后解得a的值即可1+2+a=0,a=3【点评】本题主要考查的是方程的解(根)的定义和一元一次方程的解法,将方程的解代入方程是解题的关键nm2n2m2=0的一个根为2,则n2+n2=26【分析】先根据一元二次方程的解的定义得到4n2n22=0,两边除以2n得n+=2,再利用完全平方公式变形得到原式=(n+)

9、22,然后利用整体代入的方法计算把m=2代入nm2n2m2=0得4n2n22=0,所以n+,所以原式=(n+)22=(2=2626【点评】本题考查了一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根也考查了代数式的变形能力11若一元二次方程ax2bx2015=0有一根为x=1,则a+b=2015【分析】由方程有一根为1,将x=1代入方程,整理后即可得到a+b的值把x=1代入一元二次方程ax2bx2015=0得:a+b2015=0,即a+b=2015故答案是:20

10、15【点评】此题考查了一元二次方程的解的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,关键是把方程的解代入方程12已知m=1是一元二次方程m2+am+b=0的一个根,则代数式a2+b2+2ab的值是1【分析】将x=1代入到x2+ax+b=0中求得a+b的值,然后求代数式的值即可x=1是一元二次方程x2+ax+b=0的一个根,12+a+b=0,a+b=1,a2+b2+2ab=(a+b)2=(1)2=11【点评】此题主要考查了一元二次方程的解,解题的关键是把已知方程的根直接代入方程得到待定系数的方程即可求得代数式的值13若x=1是关于x的一元二次方程x2+3mx+n=0的解,则6m+2n=2【分析】先把x=1代入x2+3mx+n=0,得到3m+n=1,再把要求的式子进行整理,然后代入即可把x=1代入x2+3mx+n=0得:1+3m+n=0,3m+n=1,则6m+2n=2(3m+n)=2(1)=

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1