ImageVerifierCode 换一换
格式:DOCX , 页数:20 ,大小:784.14KB ,
资源ID:15850993      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/15850993.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(有关于引向天线的研究与设计Word格式.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

有关于引向天线的研究与设计Word格式.docx

1、1即(r1(即r/(2)的区域称为远区),在此区域内,电基本振子满足条件:则远区场表达式为: (1-2)可见场强只有两个相位相同的分量(E,H)。根据方向函数可定义: (1-3)可得电基本振子的方向函数为: (1-4)根据归一化方向函数定义: (1-5)可得电基本阵子归一化方向函数为: (1-6)将方向函数用曲线描绘出来,称之为方向图(Fileld Pattern)。方向图就是与天线等距离处,天线辐射场大小在空间中的相对分布随方向变化的图形。依据归一化方向函数而绘出的为归一化方向图。在实际中,工程上常常采用两个特定正交平面方向图。在自由空间中,两个最重要的平面方向图是E面和H面方向图。E面即电

2、场强度矢量所在并包含最大辐射方向的平面;H面即磁场强度矢量所在并包含最大辐射方向的平面。方向图可用极坐标绘制,角度表示方向,矢径表示场强大小。1.1.2 对称阵子的辐射对称振子是中间馈电,其两臂由两段等长导线构成的振子天线。一臂的导线半径为a,长度为l。两臂之间的间隙很小,理论上可忽略不计,所以振子的总长度L=2l。对称振子的长度与波长相比拟,本身已可以构成实用天线。 图2 对称振子结构及坐标图由教材可知对称阵子辐射场为(1-7)根据方向函数的定义,对称振子以波腹电流归算的方向函数为 : (1-8)上式实际上也就是对称振子E面的方向函数1.2 天线的主要参数1.2.1方向函数由电基本振子的分析

3、可知,天线辐射出去的电磁波虽然是一球面波,但却不是均匀球面波,因此,任何一个天线的辐射场都具有方向性。所谓方向性,就是在相同距离的条件下天线辐射场的相对值与空间方向()的关系。天线在()方向辐射的电场强度()的大小可以写成 (1-9)式中,是与方向无关的常熟;为场强方向函数;则可以得到 (1-10)为了便于比较不同天线的方向性,常采用归一化方向函数,用表示,即 (1-11)下面以电基本振子为例具体介绍方向函数的概念。若天线辐射的电场强度为,把电场强度的模值为写成: (1-12)因此,场强方向函数可定义为 (1-13)将电基本振子的辐射场表达式代入上式,则电基本振子的方向函数为 (1-14)因此

4、电基本振子的归一化方向函数可写为 (1-15) 为了分析和对比方便,我们定义理想点源是无方向性天线,它在各个方向上、相同距离处的辐射场的大小是相等的,因此,它的归一化方向函数为 (1-16)1.2.2 方向图在距天线等距离(r=常数)的球面上,天线在各点产生的功率通量密度或场强(电场或磁场)随空间方向()的变化曲线,称为功率方向图或场强方向图,它们的数学表示式称为功率方向函数或场强方向函数。研究超高频天线,通常采用的两个主平面是E面和面。面是最大辐射方向和电场矢量所在的平面,面是最大辐射方向和磁场矢量所在的平面。此外,方向图形状还可用方向图参数简单地定量表示。例如:零功率波瓣宽度、半功率波瓣宽

5、度、副瓣电平以及前后辐射比等参数。1.2.3方向系数为了更明确地从数量上描述天线的方向性,说明天线方向性的定义式:在同一距离及相同辐射功率的条件下,某天线在最大辐射方向上辐射的功率密度和无方向性天线(点源)的辐射功率密度之比称为此天线的方向系数,用符号D表示。 (1-17)由于 (1-18)故 (1-19)将式(11)代入式(9),得 (1-20)1.2.4输入阻抗天线输入阻抗是指天线馈电点所呈现的阻抗值。显然,它直接决定了和馈电系数之间的匹配状态,从而影响了馈入到天线上的功率以及馈电系统的效率等。输入阻抗和输入端功率与电压、电流的关系是 (1-21)一般为复功率,和分别为输入电阻和输入电抗。

6、为实现和馈线间的匹配,需要时可用匹配消去天线的电抗并使电阻等于馈线的特性阻抗。1.2.5天线的增益 表征天线辐射能量集束程度和能量转换效率的总效益,成为天线增益。天线在某方向的增益是它在该方向的辐射强度同天线以同一输入功率向空间均匀辐射的辐射强度之比,即 (1-22)未曾指明时,某天线的增益通常指最大辐射方向增益 (1-23)1.2.6电流分布若想分析对称振子的辐射特性,必须首先知道它的电流分布。为了精确地求解对称振子的电流分布,需要采用数值分析方法,但计算比较麻烦。实际上,细对称振子天线可以看成是由末端开路的传输线张开形成,理论和实验都已证实,细对称振子的电流分布与末端开路线上的电流分布相似

7、,即非常接近于正弦驻波分布,若取图2的坐标,并忽略振子损耗,则其形式为 (1-24)式中,Im为电流波腹点的复振幅;k=2/=/c为相移常数。根据正弦分布的特点,对称振子的末端为电流的波节点;电流分布关于振子的中心点对称;超过半波长就会出现反相电流。二、引向天线2.1 引向天线简介引向天线又称八木天线,是上个世纪二十年代,日本东北大学的八木秀次和宇田太郎两人发明的。引向天线通常由一个有源振子、一个反射器及若干个引向器构成,反射器与引向器都是无源振子,所有振子都排列在一个平面内且相互平行。它们的中点都固定在一根金属杆上,除了有源振子馈电点必须与金属杆绝缘外,无源振子则都与金属杆短路连接。因为金属

8、杆与各个振子垂直,所以金属杆上不感应电流,也不参与辐射。引向器天线的最大辐射方向在垂直于各个振子且由有源振子指向引向器的方向,所以它是一种端射式天线阵。一个典型的引向天线如图(3)所示。引向天线的优点是结构简单、馈电方便、重量轻、便于转动,并有一定的增益。缺点是颇带窄,增益不够高,因此常排成阵列使用。它在超短波和微波波段应用广泛。图3 典型引向天线2.2 引向天线工作原理一副典型的引向天线由一个有源的半波振子,一个(或几个)反向器和一个(或几个)引向器组成的线性端射天线。即有一个连接到传输线上的偶极子,还有若干个未连接、等距离或不等距离安装的平行阵列偶极子(作引向器和反向器)。引向器和反向器的

9、作用是将有源振子的能量引到主辐射方向上去。有源阵子由于加有高频电动势,在周围八木天线空间产生电磁场,使得无源阵子中出现感应电动势,产生相对应的高频电流,这些电流在周围空间再衍生电磁场。由于存在无源阵子,根据互感原理在有源子上也产生相应的感应电流。所以有源阵子的总电流是激励电流和感应电流之和。当反射器的长度、引向器的长度和它到有源阵子的距离选得适当,使反射器和有源阵子所产生的电磁场在一个方向(反射器的一边)上相抵消,在相反方向上(引向器一边,主辐射方向)上相叠加,这样就可使天线得到单项辐射特性,使天线辐射可以在引向器方向上形成较尖锐的波束。八木天线的单元越多,方向性越强。但是单元的增加不与方向性

10、成正比。单元过多时,导致工作频带变窄,整个天线尺寸也将偏大。2.2.1引向器与反射器为了分析产生“引向”或“反射”作用时振子上的电流相位关系,我们先观察两个有源振子的情况。设有平行排列且相距/4的两个对称振子,当振子“2”的电流相位领先于振子“1”90,即I2=I1ej90时,振子“2”的作用好像把振子“1”朝它方向辐射的能量“反射”回去,故振子“2”称为反射振子(或反射器)。如果振子“2”的馈电电流可以调节,使其相位滞后于振子“1”90,即I2=I1e-j90,则其结果与上面相反,此时振子“2”的作用好像把振子“1”向空间辐射的能量引导过来,则振子“2”称为引向振子(或引向器)。在一对振子中

11、,振子“2”起引向器或反射器作用的关键不在于两振子的电流幅度关系,而主要在于两振子的间距以及电流间的相位关系。振子“2”起引向器或反射器的电流相位条件是反射器:0180引向器:-18002.2.2二元引向天线在使用中为了使天线的结构简单、牢固、成本低,在引向天线中广泛采用无源振子作为引向器或反射器。由于一般只有一个有源振子,在引向天线中无源振子的引向或反射作用都是相对于有源振子而言的。在引向天线中,有源振子和无源振子的长度基本上都在/2附近,此时方向函数及互阻抗随l的变化不太大,所以在近似计算时可以把单元天线的方向函数及单元件的互阻抗均按半波振子处理。至于自阻抗,则因其对l/、a/的变化敏感,

12、需要按振子的实际尺寸计算。表1中给出了有源振子长度2l1=0.475,振子半径a为0.0032时,三种不同无源振子长度对应于各种间距d的电流比I2/I1(=meja=m)。表1 电流比(2l1/=0.475)d/I2/I1=m2l2/=0.4502l2/=0.4752l2/=0.5000.100.800-142.450.806180.010.673158.670.150.728-163.350.731168.340.607146.190.200.659-175.900.661155.370.548132.790.250.597170.500.598141.510.496188.670.300.542156.120.544162.970.452103.960.350.495141.160.497111.900.41388.780.400.454125.710.45596.390.37973.210.450.418109.890.42080.530.34957.310.500.38693.780.38864.390.32341.13分析表1可以看出:(1)当有源振子2l2/一定时,只要无源振子长度2l2/及两振子间距d/选择得合适,无源振子就可以成为引向器或反射器。对应合适的d/值,通常用比有源振子短百分之几的无源振

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1