1、5.已知在空间四边形ABCD中,ADBC,ADBD,且BCD是锐角三角形,则必有()A.平面ABD平面ADC B.平面ABD平面ABCC.平面ADC平面BDC D.平面ABC平面BDC6.如图,已知ABC为直角三角形,其中ACB=90,M为AB的中点,PM垂直于ABC所在的平面,那么()A.PA=PBPCB.PA=PBC.PA=PB=PCD.PAPBPC7.如图,在四棱锥P-ABCD中,PA底面ABCD,且底面各边都相等,M是PC上的一个动点,当点M满足时,平面MBD平面PCD(只要填写一个你认为正确的条件即可).8.如图,BAC=90,PC平面ABC,则在ABC,PAC的边所在的直线中,与P
2、C垂直的直线有;与AP垂直的直线有.9.设,是空间两个不同的平面,m,n是平面及外的两条不同直线.从“mn;n;m”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:(用序号表示).10.(2017山东临沂一模)如图,在直角梯形ABCD中,ABCD,BCD=90,BC=CD,AE=BE,ED平面ABCD.(1)若M是AB的中点,求证:平面CEM平面BDE;(2)若N为BE的中点,求证:CN平面ADE.11.(2017广东江门一模)如图,在RtABC中,ACB=90,BC=2AC=4,D,E分别是AB,BC边的中点,沿DE将BDE折起至FDE,且CEF=60.(1)求四棱锥F-AD
3、EC的体积;(2)求证:平面ADF平面ACF.12.如图,在直角梯形ABCD中,ADBC,BAD=,AB=BC=AD=a,E是AD的中点,O是AC与BE的交点.将ABE沿BE折起到图中A1BE的位置,得到四棱锥A1-BCDE.图图(1)证明:CD平面A1OC;(2)当平面A1BE平面BCDE时,四棱锥A1-BCDE的体积为36,求a的值.能力提升13.已知两条不重合的直线m,n和两个不重合的平面,有下列命题:若mn,m,则n;若m,n,mn,则;若m,n是两条异面直线,m,n,m,n,则;若,=m,n,nm,则n.其中正确命题的个数是()A.1 B.2 C.3 D.414.如图,在斜三棱柱AB
4、C-A1B1C1中,BAC=90,BC1AC,则C1在底面ABC上的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.ABC内部15.如图所示,在四边形ABCD中,ADBC,AD=AB,BCD=45,BAD=90,将ABD沿BD折起,使平面ABD平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是()A.平面ABD平面ABCB.平面ADC平面BDCC.平面ABC平面BDCD.平面ADC平面ABC16.若有直线m,n和平面,下列四个命题中,正确的是()A.若m,n,则mnB.若m,n,m,n,则C.若,m,则mD.若,m,m,则m17.如图,AB是圆O的直径,点C
5、是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1.(1)若D为线段AC的中点,求证:AC平面PDO;(2)求三棱锥P-ABC体积的最大值;(3)若BC=,点E在线段PB上,求CE+OE的最小值.高考预测18.在四棱锥P-ABCD中,ABCD,AB=DC=1,BP=BC=,PC=2,AB平面PBC,F为PC中点.(1)求证:BF平面PAD;平面ADP平面PDC;(3)求VP-ABCD.答案:1.D解析:对于A,垂直于平面的平面与平面平行或相交,故A错;对于B,垂直于直线l的直线与平面垂直、斜交、平行或在平面内,故B错;对于C,垂直于平面的平面与直线l平行或相交,故C错;易知D正
6、确.2.B解析:如图(1),知A错;如图(2)知C错;如图(3),aa,a,ba,知D错;由线面垂直的性质定理知B正确.3.C解析:因为AB=CB,且E是AC的中点,所以BEAC.同理有DEAC,于是AC平面BDE.因为AC在平面ABC内,所以平面ABC平面BDE.又由于AC平面ACD,所以平面ACD平面BDE,所以选C.4.D解析:对于A,l,m,且lm,如图(1),不垂直;对于B,l,m,n,且lm,ln,如图(2),不垂直;图(1)图(2)对于C,m,n,mn,且lm,直线l没有确定,则,的关系也不能确定;对于D,l,lm,且m,则必有l,根据面面垂直的判定定理知,.5.C解析:ADBC
7、,ADBD,BCBD=B,AD平面BDC.又AD平面ADC,平面ADC平面BDC.故选C.6.C解析:M为AB的中点,ACB为直角三角形,BM=AM=CM.又PM平面ABC,RtPMBRtPMARtPMC,故PA=PB=PC.7.DMPC(或BMPC)解析:PC在底面ABCD上的射影为AC,且ACBD,BDPC.当DMPC(或BMPC)时,即有PC平面MBD,而PC平面PCD,平面MBD平面PCD.8.AB,BC,ACAB解析:PC平面ABC,PC垂直于直线AB,BC,AC.ABAC,ABPC,ACPC=C,AB平面PAC,ABAP,与AP垂直的直线是AB.9.(或)解析:逐一判断.若成立,则
8、m与的位置关系不确定,故错误;同理也错误;与均正确.10.证明:(1)ED平面ABCD,EDAD,EDBD,EDCM.AE=BE,RtADERtBDE,AD=BD.连接DM,则DMAB,ABCD,BCD=90,BC=CD,四边形BCDM是正方形,BDCM.又DECM,BDDE=D,CM平面BDE,CM平面CEM,平面CEM平面BDE.(2)由(1)知,AB=2CD,取AE中点G,连接NG,DG,在EBA中,N为BE的中点,NGAB且NG=AB,又ABCD,且AB=2CD,NGCD,且NG=CD,四边形CDGN为平行四边形,CNDG.又CN平面ADE,DG平面ADE,CN平面ADE.11.(1)
9、解:D,E分别是AB,BC边的中点,DEAC,DEBC,DE=1.依题意,DEEF,BE=EF=2,EFEC=E,DE平面CEF,DE平面ACED,平面ACED平面CEF.作FMEC于M,则FM平面ACED,CEF=60,FM=,梯形ACED的面积S=(AC+ED)EC=(1+2)2=3.四棱锥F-ADEC的体积V=Sh=3(2)证法一 如图,取线段AF,CF的中点N,Q,连接DN,NQ,EQ,则NQAC,NQDE,四边形DEQN是平行四边形,DNEQ.EC=EF,CEF=60,CEF是等边三角形,EQFC,又DE平面CEF,DEEQ
10、,ACEQ,FCAC=C,EQ平面ACF,DN平面ACF,又DN平面ADF,平面ADF平面ACF.证法二 连接BF,CEF是边长为2的等边三角形.BE=EF,EBF=CEF=30BFC=90,BFFC.DE平面BCF,DEAC,AC平面BCF.BF平面BCF,ACBF,又FCAC=C,BF平面ACF,又BF平面ADF,平面ADF平面ACF.12.(1)证明:在题图中,因为ADBC,AB=BC=AD=a,E是AD的中点,BAD=,所以BEAC,四边形BCDE为平行四边形.所以在题图中,BEA1O,BEOC,BECD,从而BE平面A1OC,又CDBE,所以CD平面A1OC.(2)解:由已知,平面A
11、1BE平面BCDE,且平面A1BE平面BCDE=BE,又由(1)知,A1OBE,所以A1O平面BCDE,即A1O是四棱锥A1-BCDE的高.由题图知,A1O=AB=a,平行四边形BCDE的面积S=BCAB=a2.从而四棱锥A1-BCDE的体积为V=SA1O=a2a=a3,由a3=36,得a=6.13.C解析:若mn,m,则n可能在平面内,故错误;m,mn,n.又n,故正确;过直线m作平面交平面于直线c,m,n是两条异面直线,设nc=O.m,m,=c,mc.m,c,c.n,c,nc=O,c,n,.故正确;,=m,n,nm,n.故正确.故正确命题有三个,故选C.14.A解析:由BC1AC,又BAAC,则AC平面ABC1,因此平面ABC平面ABC1,因此C1在底面ABC上的射影H在直线AB上.15.D解析:由题意知,在四边形ABCD中,CDBD,在三棱锥A-BCD中,平面ABD平面BCD,两平面的交线为BD,所以CD平面ABD,因此有ABCD,又因为ABAD,且CDAD=D,所以AB平面ADC,于是得到平面ADC平面ABC,故选D.16.D
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1