1、。因此,原直角三角形纸片的斜边长是10或故选C。2. 7. (2012四川广元3分)下面的四个图案中,既可以用旋转来分析整个图案的形成过程,又可以用轴对称来分析整个图案的形成过程的图案有【 】A. 4个 B. 3个 C. 2个 D. 1个【答案】A。【考点】利用旋转设计图案,利用轴对称设计图案。【分析】根据旋转、轴对称的定义来分析,图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;轴对称是指如果一个图形沿一条直线折叠,直线两侧的图形能够互相重合,就是轴对称图形1、图形4可以旋转90得到,也可以经过轴对称,沿一条直线对折,能够完全重合;图形2、图形3可以旋转180故既可用旋转
2、来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有4个。故选A。3. (2012贵州铜仁4分)如图,第个图形中一共有1个平行四边形,第个图形中一共有5个平行四边形,第个图形中一共有11个平行四边形,则第个图形中平行四边形的个数是【 】A54B110C19D109【答案】D。【考点】分类归纳(图形的变化类)。【分析】寻找规律: 第个图形中有1个平行四边形;第个图形中有1+4=5个平行四边形;第个图形中有1+4+6=11个平行四边形;第个图形中有1+4+6+8=19个平行四边形;第n个图形中有1+2(2+3+4+n)个平行四边形;则第个图形中有1+2(2+3+4+5+6+7+8
3、+9+10)=109个平行四边形。故选D。4. (2012山东济宁3分)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是【 】A12厘米 B16厘米 C20厘米 D28厘米5. (2012山东枣庄3分)如图,从边长为()cm的正方形纸片中剪去一个边长为()cm的正方形(),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为【 】A B C D 【考点】图形的剪拼。【分析】从图中可知,矩形的长是两个正方形边长的和,宽是两个正方形边长的差3,因此矩形的面积为6. (2012山东潍坊3分)甲乙两位同学用围棋子做
4、游戏如图所示,现轮到黑棋下子,黑棋下一子后白棋再下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形则下列下子方法不正确的是【 】说明:棋子的位置用数对表示,如A点在(6,3)A黑(3,7);白(5,3) B黑(4,7);白(6,2)C黑(2,7);白(5,3) D黑(3,7);白(2,6)【考点】利用轴对称设计图案。【分析】分别根据选项所说的黑、白棋子放入图形,再由轴对称的定义进行判断即可得出答:A、若放入黑(3,7),白(5,3),则此时黑棋是轴对称图形,白棋也是轴对称图形;B、若放入黑(4,7);白(6,2),则此时黑棋是轴对称图形,白棋也是轴对称图形;C、若放入黑(2,
5、7);白(5,3),则此时黑棋不是轴对称图形,白棋是轴对称图形;D、若放入黑(3,7);白(6,2),则此时黑棋是轴对称图形,白棋也是轴对称图形。7. (2012广西贵港3分)如果仅用一种多边形进行镶嵌,那么下列正多边形不能够将平面密铺的是【】A正三角形 B正四边形 C正六边形 D正八边形【考点】平面镶嵌(密铺),多边形内角和定理。【分析】分别求出各个正多边形的每个内角的度数,再利用镶嵌应符合一个内角度数能整除360即可作出判断:A正三角形的一个内角度数为180360360,是360的约数,能镶嵌平面,不符合题意;B正四边形的一个内角度数为180490C正六边形的一个内角度数为1806120D
6、正八边形的一个内角度数为1808135,不是360的约数,不能镶嵌平面,符合题意。二、填空题1. (2012四川成都4分)如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图: 第一步:如图,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用); 第二步:如图,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分; 第三步:如图,将MN左侧纸片绕G点按顺时针方向旋转180,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180,使线段HC与HE重合,
7、拼成一个与三角形纸片EBC面积相等的四边形纸片 (注:裁剪和拼图过程均无缝且不重叠) 则拼成的这个四边形纸片的周长的最小值为 cm,最大值为 cm【答案】20;12+【考点】图形的剪拼,矩形的性质,旋转的性质,三角形中位线定理。【分析】画出第三步剪拼之后的四边形M1N1N2M2的示意图,如答图1所示。 图中,N1N2=EN1+EN2=NB+NC=BC,M1M2=M1G+GM+MH+M2H=2(GM+MH)=2GH=BC(三角形中位线定理)。又M1M2N1N2,四边形M1N1N2M2是一个平行四边形,其周长为2N1N2+2M1N1=2BC+2MN。BC=6为定值,四边形的周长取决于MN的大小。如
8、答图2所示,是剪拼之前的完整示意图。过G、H点作BC边的平行线,分别交AB、CD于P点、Q点,则四边形PBCQ是一个矩形,这个矩形是矩形ABCD的一半。M是线段PQ上的任意一点,N是线段BC上的任意一点,根据垂线段最短,得到MN的最小值为PQ与BC平行线之间的距离,即MN最小值为4;而MN的最大值等于矩形对角线的长度,即四边形M1N1N2M2的周长=2BC+2MN=12+2MN,四边形M1N1N2M2周长的最小值为12+24=20;最大值为12+2=12+2. (2012贵州遵义4分)在44的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一
9、个轴对称图形,这样的移法共有 种【答案】8。【分析】根据轴对称图形的性质,分别移动一个正方形,即可得出符合要求的答案。如图所示:故一共有8种做法。三、解答题1. (2012山西省6分)实践与操作:如图1是以正方形两顶点为圆心,边长为半径,画两段相等的圆弧而成的轴对称图形,图2是以图1为基本图案经过图形变换拼成的一个中心对称图形(1)请你仿照图1,用两段相等圆弧(小于或等于半圆),在图3中重新设计一个不同的轴对称图形(2)以你在图3中所画的图形为基本图案,经过图形变换在图4中拼成一个中心对称图形【答案】解:(1)在图3中设计出符合题目要求的图形: (2)在图4中画出符合题目要求的图形:【考点】利
10、用轴对称和旋转设计图案。【分析】此题为开放性试题,答案不唯一。(1)根据轴对称图形两部分沿对称轴折叠后可重合作出图形。(2)根据中心对称图形是图形沿对称中心旋转180度后与原图重合作出图形。2. (2012四川广安8分)现有一块等腰三角形板,量得周长为32cm,底比一腰多2cm,若把这个三角形纸板沿其对称轴剪开,拼成一个四边形,请画出你能拼成的各种四边形的示意图,并计算拼成的各个四边形的两条对角线长的和如图,等腰三角形的周长为32cm,底比一腰多2cm,AB=AC=10,BD=CD=6,AD=8。拼成的各种四边形如下:矩形:BD=10,四边形的两条对角线长的和是102=20。平行四边形1:连接
11、AC,过点C作CEAB的延长线于点E,四边形的两条对角线长的和是AC+BD= +8。平行四边形2:连接BD,过点D作DEBC的延长线于点E,四边形的两条对角线长的和是:AC+BD=6+铮形:连接BD交AB于点O。易知,ADBDOB。,即BO=4.8。BD=2BO=24.8=9.6,AC+BD=9.6+10=19.6。【考点】图形的剪拼,平行四边形和矩形的判定和性质,勾股定理,相似三角形的判定和性质。【分析】根据题意画出所有的四边形,再根据勾股定理、平行四边形的性质、相似三角形的性质分别进行计算即可求出各个四边形的两条对角线长的和。3. (2012辽宁鞍山8分)如图,某社区有一矩形广场ABCD,
12、在边AB上的M点和边BC上的N点分别有一棵景观树,为了进一步美化环境,社区欲在BD上(点B除外)选一点P再种一棵景观树,使得MPN=90,请在图中利用尺规作图画出点P的位置(要求:不写已知、求证、作法和结论,保留作图痕迹)点P即为所求。【考点】作图(应用与设计作图),线段垂直平分线的性质,圆周角定理。【分析】首先连接MN,作MN的垂直平分线交MN于O,以O为圆心, MN长为半径画圆,交BD于点P,点P即为所求4. (2012贵州遵义4分)如图,将边长为cm的正方形ABCD沿直线l向右翻动(不滑动),当正方形连续翻动6次后,正方形的中心O经过的路线长是 cm(结果保留)5. (2012贵州铜仁5
13、分)某市计划在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C的位置如图所示,请在原图上利用尺规作图作出音乐喷泉M的位置,(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)作图如下:M即为所求。【考点】作图(应用与设计作图)。【分析】连接AB,作出线段AB的垂直平分线,在矩形中标出点M的位置(以点C为圆心, AB长为半径画弧交AB的垂直平分线于点M)。6. (2012山东德州8分)有公路l1同侧、l2异侧的两个城镇A,B,如下图电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1