ImageVerifierCode 换一换
格式:DOCX , 页数:46 ,大小:2.48MB ,
资源ID:15755653      下载积分:12 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/15755653.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(基于UG软件的整体叶轮模型设计docWord文件下载.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

基于UG软件的整体叶轮模型设计docWord文件下载.docx

1、下图是叶轮零件(图1-1,1-2,1-3)。图1-1 叶轮前视图图1-2叶轮俯视图图1-3 叶轮叶片之间的角度1.2国内(外)发展概况及现状的介绍通常在整体叶轮的设计图上给出的是叶片中性面上顶部和根部的两组数据点,包括顶部和根部的一系列离散数据点和对应点的叶片厚度值。本课题采用B样条方法对叶轮曲面进行造型。整体结构叶轮(图14)的应用可使航空发动机推重比、工作效率、寿命及可靠性大大提高,因此在各类新型发动机及大推力火箭发动机中应用愈来愈多,其加工质量的优劣对发动机的性能有着决定性的影响,而其叶片的形状又是机械中最难加工的曲面构成的。因此,整体叶轮的加工一直是机械加工中长期困扰工程技术人员的难题

2、。为了加工出合格的叶轮,人们想出了很多的办法。由最初的铸造成型后修光,到后来的石蜡精密铸造,还有电火花加工等方法。其中,也有的厂家利用三坐标仿形铣。但是这些方法不是加工效率低下,就是精度或产品机械性能不佳,一直到数控加工技术应用到叶轮的加工中,这些问题才得到了根本的解决。图1-4 整体叶轮叶轮加工的复杂性不仅在于其叶片是复杂的曲面造型,而且在于能否精确地加工出形状复杂的叶轮已成为衡量数控机床性能的一项重要标准。曲面根据形成原理可以分为直纹曲面和非直纹曲面。直纹面又可分为可展直纹面和非可展直纹面,对于可展直纹面,完全可以使用非数控机床进行加工。而对于非可展直纹面和自由曲面(非直纹曲面)叶片的整体

3、叶轮来说,则必须用四轴以上联动的数控机床才能准确地将其加工出来。由于数控机床具有四轴联动或五轴联动的功能,则利用它进行叶轮加工时,既可以保证刀具的球头部分对工件进行准确地切削,又可以利用其转动轴工作使刀具的刀体或刀杆部分避让开工件其它部分,避免发生干涉或过切。早在七十年代初我国的几家大型企业就开始将数控机床用于整体叶轮的加工上。目前,我国已有越来越多的厂家开始采用锻造毛坯后多坐标NC加工成型的方法加工叶轮,尤其是国防工业中所用的关键叶轮,如火箭发动机的转子、风扇,飞机发动机的涡轮等。目前都已采用多坐标数控机床加工。国内所用的机床大多是引进的具有国际先进水平的四、五轴联动数控机床。这些年发展起来

4、的高速切削在叶轮叶片加工中已经广泛使用。Starrag公司提供的五轴、四轴叶轮叶片加工机床的最高转速可达5万转/分。实际生产中转速也常用到1万转/分左右。使用硬质合金刀具加工不锈钢普遍切削速度为150米/分。在编程方面,叶轮的数控加工代码的生成也是一个很重要的步骤。目前多数厂家采用通用CAD/CAM的商用软件编制叶轮的数控加工程序。目前用得较多的有UG,CAM/AND等。采用这些软件编程有不便之处,由于通用软件并非针对某一种零件设计,所以其功能繁多、界面复杂。输入参数后须经过许多步骤才能编出程序,且需多次反复,而且编程人员必须对叶轮几何造型很熟悉,同时用相当多的时间学习掌握了通用软件的使用方法

5、才能编出叶轮数控加工程序。也有部分工厂未采用通用软件,而是针对某一叶轮编制了专用程序,但现在情况多是使用面窄,使用性能也较差。例如,航天机电集团某厂所做风扇是使用早年北京邮电大学研制的程序,此程序还是DOS下所编制的,使用很不方便。航天机电集团三院某所的加工转子的软件也是在此基础础上改编的。国际上有许多工厂与我国的情况类似,也采用通用软件编制叶轮数控加工程序。但一些先进的多坐标数控机床生产厂商(如STARRAG)及专业的叶轮加工工厂(如美国的NREC)都推出了专用于叶轮的数控加工软件包,如MAX-5,MAX-AB,STARRAG程序等。不采用通用的CAD/CAM软件有一系列的优点。这是因为专用

6、软件的生产厂商通常都有多年的叶轮加工和数控编程的经验,软件中针对不同特征的叶轮设计了刀具路径模板。对于叶轮加工中最易出现的干涉问题,也有了充分的考虑。这些都是通用软件所不具备的。另外,这些软件通常集成性好,可以和设计结果和工艺设计直接相连。作为专用软件,界面更为简洁、重点突出,利于设计人员掌握。这些程序尽管编程性能优良,但所包含的工艺信息都很少。一般只提供刀具尺寸表、转速表、进给率表等,而缺乏推荐的切削刀具与切削量,更没有如何减少加工变形的指南。我国尚缺乏在这种专用于叶轮的数控加工的编程软件,国内少数工厂已经认识到专用软件的优越性,意欲引进。但国外索价昂贵。所以开发中国产权的叶轮数控加工软件迫

7、在眉睫2。1.3本文所需解决问题以及采用的手段和方法整体叶轮采用了整体式结构,并带有复杂型面的扭曲叶片,因此增大了对叶片型面的加工和检测难度,目前一般利用三坐标测量机或专用测量样板来测量来检测整体叶轮的叶片型面误差。由于本文所利用的整体叶轮型面数据点是利用三坐标测量机测量采用精密展成电解法加工后的整体叶轮叶片的表面,故存在着一定的误差。本文所需解决的问题:曲面的确定,航空发动机整体叶轮模型的建立,航空发动机整体叶轮数控加工仿真结果,利用UG软件生成NC加工程序。本文首先采用适当的数学方法对数据进行处理,研究曲面的加工方法,构造的曲面应保证曲面的连续性、光滑度,精度应符合要求,再用UG软件进行整

8、体叶轮的造型、数控加工仿真,对曲面加工进行仿真,选择的加工方式,刀具以及走刀路径符合实际加工要求。生成的加工程序时,选择某一种数控加工系统进行后处理,生成加工的刀位文件。在造型中由于所给的数据存在着一定的误差,需利用B样条曲线和直纹面来进行拟合,使得整体叶轮大的叶片形状更接近理想的整体叶轮。数控加工一直是整体叶轮加工的难题,本文主要是仿真四轴联动的数控机床,使得通过后置处理的数控程序能够应用到数控机床中去。整体叶轮数控展成电解加工这一课题经过多年的研究探索,已取得了很大的进展,初步形成了进行整体叶轮加工的软、硬件条件,并进行了有关的工艺试验。但在整体叶轮加工的实用化方面做得还不够,要真正加工出

9、符合要求的零件,在工艺方面还有许多要完善的地方,如夹具的设计。1.4本文研究成果及意义根据已有的数据,利用UG软件得到整体叶轮的模型,并利用UG CAM生成数控加工程序,以及整体叶轮的夹具设计。整体叶轮的叶片曲面一直以来都是加工中的难点,通过此次的设计,经后置处理应用于数控机床上的程序代码,加工后的叶片的叶盆型面精度可达 0.1mm,叶背面由0.5mm的加工余量由后续抛光工序完成。并且此方法技术柔性好,生产率高,质量好,能够满足整体叶轮工作在高温、高压、高转速条件下,选用材料多为不锈钢、合金钢、耐热合金等难切削材料进行加工。2 叶轮的加工工艺分析2.1整体叶轮结构工艺性分析在本实例中,需要对整

10、体叶轮的流道、叶片和圆角主要曲面进行加工,如图2-1所示。图2-1 整体叶轮另外,在叶片之间有大量的材料需要去除。为了使叶轮满足气动性的要求,叶片常采用大扭角、根部变圆角的结构,这给叶轮的加工提出了更高的要求。根据本例具体情况下面介绍其加工难点。(1)加工槽道变窄,叶片相对较长,刚度较低,属于薄壁类零件,加工过程极易变形。(2)槽道最窄处叶片深度超过刀具直径的8倍以上,相邻叶片空间极小,在清角加工时刀具直径较小,刀具容易折断,切削深度的控制也是加工的关键技术。(3)本设计中的整体叶轮曲面为自由曲面,流道窄,叶片扭曲比较严重,并且有明显的后仰趋势,加工时极易产生干涉,加工难度较大。有些叶轮由于有

11、副叶片,为了避免干涉,要分段加工曲面,因此,保证加工表面的一致性也有困难。整体叶轮加工技术要求包括尺寸、形状、位置和表面粗糙度等几何方面的要求,也包括机械、物理和化学性能的要求。在对叶轮进行加工前,必须对叶轮毛坯进行探伤检查。叶轮叶片必须具有良好的表面质量。精度一般集中在叶片表面、轮毂的表面和叶根表面。表面粗糙度值应小于Ra0.8um。截面间的型面平滑过渡。另外叶身的表面纹理力求一致,一致的流水线是最好的纹理表面,但这样又限制了走刀方向,从而在一定程度上限制了加工的刀具轨迹。整体叶轮在工作中为了防止振动并降低噪声,对整体叶轮对动平衡性的要求很高,因此在加工过程中要综合考虑叶轮的对称问题。在进行

12、UG编程时可利用叶片、流道等关于叶轮旋转轴的对称性的加工表面,可采用对某一元素的加工来完成对相同加工内容不同位置的操作,如本设计就应用了旋转阵列加工的操作。另外,应尽可能减少由于装夹或换刀造成的误差。2.2整体叶轮加工工艺准备2.2.1机床准备叶轮轮毂面及叶片分别由叶片中性面根部曲线和叶片中性面顶部曲线绕Z轴旋转而成;经过旋转轴Z的设计基准面为子午面;中性面是处于叶片压力面和吸力面中间位置的曲面。对于轮毂曲面和包覆曲面,可分别由叶片根部曲线和叶片顶部曲线绕Z轴回转而成。因此三轴机床根本无法加工出整体式叶轮,四轴机床业很难达到要求,所以加工整体式叶轮必须要用五轴联动的机床才能满足加工要求。五轴联

13、动数控机床(如图2-2所示)是一种科技含量高、精密度要求高,专门用于加工复杂曲面零件的机床,五轴加工的主要优点是仅需一次装夹定位即能完成复杂形体零件的全部加工,可以节省大量的加工时间。本文采用采用立式五轴联动高速加工中心,数控机床主要参数X轴行程900mm,Y轴行程600mm,Z轴行程550mm,A轴旋转范围0360,B轴摆动范围-9090,刀库容量40把刀位,数控系统为SIEMENS 840D9。图2-2五轴联动数控机床2.2.2定位基准选择工件的定位基准,实际上确定工件的定位基面。根据选定的基面加工与否,又将定位基准分为粗基准和精基准。在起始工序中,只能选择未经加工的毛坯表面作定位基准,这

14、种基准称为粗基准。用加工过的表面作定位基准,则称为精基准。(1)精基准的选择原则基准重合原则 直接选择加工表面的设计基准为定位基准,称为基准重合原则。采用基准重合原则可以避免由定位基准与设计基准不重合而引起的定位误差(基准不重合误差)。基准统一原则 同一零件的多道工序尽可能选择同一个定位基准,称为基准统一原则。这样既可保证各加工表面问的相互位置精度,避免或减少困基准转换而引起的误差,而且简化了夹具的设计与制造工作,降低了成本,缩短了生产准备周期。自为基准原则 精加工或光整加工工序要求余量小而均匀,选择加工表面本身作为定位基准,称为自为基准原则。互为基准原则:为使各加工表面之间具有较高的位置精度,或为使加工表面具有均匀的加工余量,可采取两个加工表面互为基准反复加工的方法,称为互为基准原则。便于装夹原则:所选精基准应能保证工件定位准确稳定,装夹方便可靠,夹具结构简单适用,操作方便灵活。同时,定位基准应有足够大的接触面积,以承受较大的切削力。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1