ImageVerifierCode 换一换
格式:DOCX , 页数:13 ,大小:118.19KB ,
资源ID:15707701      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/15707701.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(热处理大豆蛋白体外消化产物结构特征分析Word文件下载.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

热处理大豆蛋白体外消化产物结构特征分析Word文件下载.docx

1、胃蛋白酶;热处理;结构特性大豆是优质蛋白质的主要来源,也是中国膳食模式的一个重要组成部分。大豆蛋白在人们的食物消费中起到重要的作用,以大豆蛋白作为添加辅料的食品种类逐年增加,目前世界上已经开发出上千种含有大豆蛋白的产品1。其中由于大豆分离蛋白(soybean protein isolate,SPI)具有蛋白含量高、功能特性突出等优点成为食品工业生产中应用最多的一种大豆蛋白。大豆蛋白质是由多种氨基酸相互联结构成的具有特定空间结构的生物大分子,疏水性氨基酸含量较高,具有较为紧密的分子结构,对酶解具有很强的抵抗力2-4。研究者对诸多食物蛋白(特别是大豆蛋白)的生物效价、蛋白酶降解情况已有充分的认识,

2、然而至今对此类蛋白在人体正常消化道条件下的消化情况仍知之甚少。酶法水解的组分多样,种类多元,反应影响因素繁多。目前,对蛋白酶解的研究主要集中在酶解工艺方面,对酶解动力学研究较少。现有的酶解动力学研究主要是关于乳清蛋白5、骆驼及牛乳蛋白6、大豆蛋白质为主的植物性蛋白7、米糠蛋白8、紫菜蛋白9、蚕蛹蛋白10、沙丁鱼11及鳕鱼蛋白的酶解动力学模型及酶解动力学相关常数等,而对大豆蛋白在体外模拟消化过程中的酶解动态历程鲜见报道。本研究通过模拟人体胃部消化环境的消化模型12-14,探究天然大豆蛋白及改性大豆蛋白的消化特性及蛋白质结构组成对消化过程影响机制,同时采用理论推导与实验分析相结合的建模策略,模拟消

3、化动态历程建立胃蛋白酶消化动力学模型。本研究的实施有助于在医药生产领域研究蛋白质作为营养因子的诸多生物学功能,为大豆育种工作提供理论依据,为功能性大豆蛋白产品的研发提供新的思路,有助于全面深入评价及建立大豆蛋白营养消化模式,促进大豆蛋白产业的发展。1 材料与方法1.1 材料与试剂大豆分离蛋白 东北农业大学食品学院粮油加工实验室自制;氢氧化钠、盐酸、磷酸二氢钠、磷酸氢二钠、硫酸、硫酸铜、硫酸钾、硼酸均为国产分析纯试剂;三羟甲基氨基甲烷、-巯基乙醇、亚硫酸氢钠、甲基红、溴甲酚绿、丙烯酰胺、N,N-甲叉双丙烯酰胺、十二烷基硫酸钠、过硫酸铵、四甲基乙二胺、二硫苏糖醇、溴酚蓝、1-苯胺基-8-萘磺酸、乙

4、二胺四乙酸二钠(ethylene diamine tetraacetic acid disodium salt,Na2EDTA)、5,5-二硫双-2-硝基苯甲酸 美国Sigma公司;甘油 天津市光复精细化工研究所;甘氨酸 天津市星月化工有限公司。1.2 仪器与设备PH SJ-4A型实验室pH计 上海雷磁公司;JJ-1增力电动搅拌器 江苏省金坛市金城国胜实验仪器厂;TD5M-WS台式大容量离心机 上海卢湘仪离心机仪器有限公司;79-1磁力加热搅拌器 武汉格莱莫检测设备有限公司;XW-80A旋涡混合器 上海青浦沪西仪器厂;KQ-500B型容器式超声波仪 昆山市超声仪器有限公司;Netzsch-DS

5、C 204-F型差示扫描量热(differential scanning calorimetry,DSC)仪 德国Netzsch公司;MAGNA-IR560傅里叶变换红外光谱(Fourier transform infrared spectroscopy,FTIR)系统 美国尼高力公司;Raman Station 400拉曼光谱仪 美国PE公司。1.3 方法1.3.1 大豆分离蛋白的热处理将适量大豆分离蛋白分散于蒸馏水中配制成5 g/100mL的大豆蛋白溶液15,并取调配后样品溶液100 mL,分别密封于加热套管中在控温水浴锅中,首先进行70、80、85、90、100 不同加热温度的预热处理,

6、加热15 min。样品经热处理完成后,迅速放入冰水浴降温待用。1.3.2 大豆分离蛋白消化产物水解度的测定水解度(degree of hydrolysis,DH)的测定采用邻苯二甲醛(ortho-phthalaldehyde,OPA)法,Church等16首先于1983年应用OPA测定了蛋白质水解度,DH的定义是被水解的肽键数的百分比。每水解一个肽键便会释放出一个游离氨基,游离氨基与OPA发应形成一种黄色络合物。用可见光分光度计在波长340 nm处测定其吸光度。水解度如下式计算:式中:htot7.8 mmol/g;h是每克蛋白丝氨酸氨基毫摩尔数的函数/(mmol/g);c为每克蛋白丝氨酸氨基毫

7、摩尔数/(mmol/g);X为样品质量/g;P为样品中的蛋白含量/%;0.1为样品体积转换成L;0.970、0.342。1.3.3 DSC法的测定参考Tang Chuanhe等17的方法。称取不同超声处理条件下大豆蛋白样品5 mg与10 L的0.01 mol/L的磷酸缓冲溶液(pH 7.0)混合放入铝盒中,压盘密封,室温条件下放置8 h。将经过平衡处理的样品铝盒放入到DSC仪操作台左侧,空白铝盒放置在右侧。以10 /min升温速率在温度范围为20110 范围内扫描。将此过程中大豆蛋白的变性温度(TD)和变性焓变(H)记录下来。重复测定3 次取平均值以减少实验误差。1.3.4 FTIR的测定参考

8、张忠慧18、刘媛19等的方法。将冻干样品置于干燥器内用P2O5充分干燥,称取样品1 mg,与100 mg溴化钾研磨混匀压片测定FTIR。在数据采集期间,为了减少水蒸汽IR吸收的干扰,持续用干燥的N2吹扫测量室。在与样品测定完全相同的条件下在室温敞开状态收集空气背景。测定在波数范围为4 000400 cm1的吸收光谱,分辨率4 cm1,波数精度0.01 cm1,扫描次数64 次,环境温度25 。谱图处理利用Systat的Peakfit Version 4.12软件拟合,根据其积分面积计算各种二级结构的相对百分含量。1.3.5 拉曼光谱的测定参考Zhang Xuan等20的方法。将大豆分离蛋白粉末

9、直接平铺在载玻片上进行拉曼测定,激发光波长为785 nm,激光功率为300 mW,扫描范围4002 000 cm1,每次扫描时间60 s,积分10 次,4 次扫描进行累加。以苯丙氨酸(1 0031) cm1)作为归一化因子,得到大豆分离蛋白的拉曼谱。谱图基线校正、谱峰归属查找采用ACD Labs V12软件。以苯丙氨酸谱峰(10031) cm1)的强度作为归一化因子,得到不同品种大豆7S球蛋白和大豆11S球蛋白的拉曼光谱,采用Origin 8.5软件绘制。1.4 数据统计与分析所有的实验至少进行3 次实验,结果表示为s,利用SPSS Statistics 22软件对数据进行ANOVA差异显著性

10、分析,P0.05为显著性差异。采用Origin 8.5、OMNIC软件包、PeakFit 4.12等软件分析进行数据分析、图表处理及图谱分析处理。2 结果与分析2.1 热处理大豆分离蛋白的DSC分析应用DSC仪测定热处理过程中SPI的变性程度,主要表现为两个测定指标即变性温度(TD)和热焓变(H),其中TD可用于推测蛋白质的热稳定性,而H是疏水作用和蛋白质结构紧密性的重要指标21。大豆分离蛋白主要含两种蛋白,-伴球蛋白(7S)和大豆球蛋白(11S),热变性温度分别分布在6875 和8593 。由表1可知,未经加热处理的大豆分离蛋白中7S和11S球蛋白变性温度分别为73.2 和92.7 。表 1

11、 热处理大豆分离蛋白DSC分析Table 1 DSC characteristics of heat-treated SPI注:下脚标1、2分别表示7S、11S球蛋白;.此处蛋白已变性,吸热峰消失,TD与H值无法读出。大豆蛋白样品DSC特征TD1/TD2/H1/(J/g)H2/(J/g)未热处理大豆蛋白73.20.692.70.82.30.17.30.2热处理大豆分离蛋白(70 、15 min)73.90.292.40.42.20.17.10.2热处理大豆分离蛋白(80 、15 min)95.60.56.50.3热处理大豆分离蛋白(85 、15 min)95.70.36.30.2热处理大豆分离

12、蛋白(90 、15 min)在本研究中样品质量浓度的差异对TD和H的影响不明显。研究选取两个具有代表性的处理条件(80 、15 min,90 、15 min),分别为7S与11S球蛋白的起始变性温度点。如表1所示,70 热处理后大豆分离蛋白TD和H并未表现出显著的变化。而在80 热处理15 min后,7S球蛋白的吸热峰消失,表明在此条件下7S球蛋白组分发生完全变性,而90 热处理15 min,11S球蛋白组分发生完全变性。由此可知,尽管该热处理温度远低于大豆球蛋白的变性温度(92.7 ),蛋白质结构依然受到了部分影响,内部的疏水性基团在此过程中发生部分外露,蛋白质亚基组分解离,而后解离的大豆球

13、蛋白重新折叠形成具有更高TD的更稳定热聚集体22。由此可以推断,在80 处理15 min后大豆分离蛋白中主要存在由变性-伴球蛋白构成不可溶性热聚集体,另有小部分可溶性热聚集体由部分变性的大豆球蛋白组成23。相比之下,在90 热处理15 min后,7S和11S均发生完全变性,此时其热聚集体组成由完全变性的两种球蛋白组成。2.2 不同热处理条件对大豆分离蛋白体外模拟消化过程蛋白质DH影响图1 不同温度预处理下大豆分离蛋白体外模拟消化的DH曲线Fig. 1 DH values of soy protein isolate pretreated at different temperatures du

14、ring in vitro digestion从图1可以看出,不同温度15 min热处理对大豆蛋白的消化有一定促进作用,蛋白分子结构伸展松散,并且使一些原来在分子内部包藏而不易于与化学试剂起反应的侧链活性基团暴露出来,因此易为胃蛋白酶消化降解24。实验由DSC分析结果选取7S已变性而11S未变性的中间临界点85 研究,从DH曲线来看,随着热处理温度的不断升高,DH曲线呈现先上升后下降的变化趋势,在85 时达到最大值,随着预处理温度的升高,蛋白质变性后,分子互相凝集易形成沉淀及热聚集体,分子形状也会发生变化,不易于酶与蛋白质结合,表现为DH的下降。大豆蛋白质在030 min阶段发应最剧烈,DH的变化率大,而1 h后DH变化趋于平缓。在加热温度(85 )不变的情况下,选取不同时间(10、15、20、30、60 min)对大豆蛋白质预处理,然后进行1 h的体外模拟消化,DH结果见图2。图2 不同时间预处理大豆分离蛋白体外模拟消化的DH曲线Fig.

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1