ImageVerifierCode 换一换
格式:PPT , 页数:35 ,大小:1.53MB ,
资源ID:15565379      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/15565379.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(SPSS做回归分析PPT资料.ppt)为本站会员(b****2)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

SPSS做回归分析PPT资料.ppt

1、画出散点图观察。双击双击改变显示格式改变显示格式改变坐标轴的显示改变坐标轴的显示为了求得经验公式,为了求得经验公式,可通过如下步骤进可通过如下步骤进行:行:从散点图可以从散点图可以看出年龄与血看出年龄与血压有线性关系:压有线性关系:当自变量和当自变量和因变量选好因变量选好后,点击后,点击 OK 键键1.Model为回归方程模型编号为回归方程模型编号(不同方法对应不同模型不同方法对应不同模型)2.R为回归方程的复相关系数为回归方程的复相关系数3.R Square即即R2系数,用以判断自变量对因变量的影响有多系数,用以判断自变量对因变量的影响有多大,但这并不意味着越大越好大,但这并不意味着越大越好

2、自变量增多时,自变量增多时,R2系数系数会增大,但模型的拟合度未必更好会增大,但模型的拟合度未必更好4.Adjusted R Square即修正即修正R2,为了尽可能确切地反映模为了尽可能确切地反映模型的拟合度,用该参数修正型的拟合度,用该参数修正R2系数偏差,它未必随变量个系数偏差,它未必随变量个数的增加而增加数的增加而增加5.Std.Error of the Estimate是估计的标准误差是估计的标准误差结果说明结果说明常用统计量:常用统计量:1.Sum of Squares为回归平方和(为回归平方和(Regression)、)、残差平方和残差平方和(Residual)、)、总平方和(总

3、平方和(Total)2.df 为自由度为自由度3.Mean Square4.F5.Sig 为大于为大于F的概率,其值为的概率,其值为0.000,拒绝回归系数为,拒绝回归系数为0的原假的原假设:设:b0=b1=0即认为回归方程显著性成立即认为回归方程显著性成立结果说明结果说明方差分析:方差分析:1.Model 为回归方程模型编号为回归方程模型编号2.Unstandardized Coefficients 为非标准化系数,为非标准化系数,B为系数值,为系数值,Std.Error为系数的标准差为系数的标准差3.Standardized Coefficients 为标准化系数为标准化系数4.t 为为t

4、检验,是偏回归系数为检验,是偏回归系数为0(和常数项为和常数项为0)的假设检验的假设检验5.Sig.为偏回归系数为为偏回归系数为0(和常数项为和常数项为0)的假设检验的显著性的假设检验的显著性水平值水平值6.B 为为Beta系数,系数,Std.Error 为相应的标准差为相应的标准差结果说明结果说明回归系数分析:回归系数分析:第一导丝盘速度第一导丝盘速度Y是合成纤维抽丝的重要因素,它是合成纤维抽丝的重要因素,它与电流的周波与电流的周波X有密切关系,由生产记录得:有密切关系,由生产记录得:周波周波X 49.250.049.349.049.049.549.849.950.250.2速度速度Y 16

5、.717.016.816.616.716.816.917.017.017.1 试求试求Y对对X的经验回归直线方程,并求误差方差的经验回归直线方程,并求误差方差2的的无偏估计值。无偏估计值。检验检验X与与Y之间是否存在显著的线性关系(取之间是否存在显著的线性关系(取=0.01)?)?例例.概率论与数理统计概率论与数理统计P267 例例9.2.1检检验验说说明明线线性性关关系系显显著著操作步骤:操作步骤:AnalyzeRegression Linear StatisticsModel fit Descriptives结果:结果:对于多元线性回归主要需研究如下几个问题:1)建立因变量建立因变量Y与与

6、x1、x2、xm的经验公式(回的经验公式(回归方程)归方程)2)对经验公式的可信度进行检验对经验公式的可信度进行检验3)判断每个自变量判断每个自变量xi(i=1,m)对对Y的影响是否的影响是否显著?显著?4)利用经验公式进行预报、控制及指导生产利用经验公式进行预报、控制及指导生产5)诊断经验公式是否适合这组数据诊断经验公式是否适合这组数据方差分析的主要思想是把方差分析的主要思想是把 yi 的的总方差进行分解:总方差进行分解:模型平方和模型平方和误差平方和误差平方和二、多元线性回归二、多元线性回归1.参数估计方法参数估计方法最小二乘法最小二乘法2.回归方程显著性的检验回归方程显著性的检验就是检验

7、以下假设是就是检验以下假设是否成立(采用方差分析法):否成立(采用方差分析法):如果自变量对如果自变量对Y的影响显著,则总方差主要应由的影响显著,则总方差主要应由xi引起,也就是原假设不成立,从而检验统计量为:引起,也就是原假设不成立,从而检验统计量为:方差来方差来源源自由度自由度平方和平方和均方均方Fp值值自变量自变量mMSSMMSMMSEMSp随机误随机误差差n-m-1ESSEMS和和n-1TSS多元线性回归的方差分析表:多元线性回归的方差分析表:在实际问题中,影响因变量在实际问题中,影响因变量Y的因素(自变量)可的因素(自变量)可能很多。在回归方程中,如果漏掉了重要因素,则会能很多。在回

8、归方程中,如果漏掉了重要因素,则会产生大的偏差;但如果回归式中包含的因素太多,则产生大的偏差;但如果回归式中包含的因素太多,则不仅使用不便,且可能影响预测精度。如何选择适当不仅使用不便,且可能影响预测精度。如何选择适当的变量,建立最优的回归方程呢?的变量,建立最优的回归方程呢?在最优的方程中,所有变量对因变量在最优的方程中,所有变量对因变量Y的影响都应的影响都应该是显著的,而所有对该是显著的,而所有对Y影响不显著的变量都不包含影响不显著的变量都不包含在方程中。选择方法主要有:在方程中。逐步筛选法逐步筛选法(STEPWISE)(最常用最常用)向前引入法向前引入法(FORWARD)向后剔除法向后剔

9、除法(BACKWARD)等等逐步回归逐步回归变量选择问题变量选择问题开始开始对对不在方程中的变不在方程中的变量考虑能否引入?量考虑能否引入?引入变量引入变量能能对对已在方程中的变已在方程中的变量考虑能否剔除?量考虑能否剔除?能能剔除变量剔除变量否否筛选结束筛选结束否否逐步回归的基本思想和步骤:逐步回归的基本思想和步骤:某地区大春某地区大春粮食产量粮食产量 y 和大春粮食和大春粮食播种面积播种面积x1、化肥用量化肥用量x2、肥猪发展头肥猪发展头数数x3、水稻水稻抽穗扬花期抽穗扬花期降雨量降雨量x4的的数据如下表,数据如下表,寻求大春粮寻求大春粮食产量的预食产量的预报模型。报模型。例例2、大春粮食

10、产量的预报模型、大春粮食产量的预报模型1)按按GraphsScatter Simple顺序展开对话框顺序展开对话框2)将将y选入选入Y Axis,然后将其余变量逐个选入然后将其余变量逐个选入X Axis ,绘出散点图,观察是否适宜用线性方程来拟合。绘出散点图,观察是否适宜用线性方程来拟合。1.初步分析(作图观察)初步分析(作图观察)1)按按StatisticsRegression Linear顺序展开对话框顺序展开对话框2)将将y作为因变量选入作为因变量选入Dependent框中,然后将其余变框中,然后将其余变量选入作为自变量选入量选入作为自变量选入Independent(s)框中框中3.Me

11、thod框中选择框中选择Stepwise(逐步回归逐步回归)作为分析方式作为分析方式4.单击单击Statistics按钮,按钮,进行需要的选择,进行需要的选择,单击单击Continue返回返回5.单击单击OK按钮执行按钮执行2.回归模型的建立回归模型的建立被引入与被剔除的变量被引入与被剔除的变量回归方程模型编号回归方程模型编号引入回归方程的自变量名称引入回归方程的自变量名称从回归方程被剔除的自变量名称从回归方程被剔除的自变量名称回归方程中引入或剔除自变量的依据回归方程中引入或剔除自变量的依据3.结果分析结果分析由复相关系数由复相关系数R=0.982说明该预报说明该预报模型高度显著,可用于该地区

12、大春模型高度显著,可用于该地区大春粮食产量的短期预报粮食产量的短期预报常用统计量常用统计量方差分析表方差分析表回归方程为:回归方程为:按常识理解,粮食产量和播种面积关系密切,但预报按常识理解,粮食产量和播种面积关系密切,但预报模型中,变量模型中,变量x1未引入,这是因为:未引入,这是因为:多年来该地区的大春粮食播种面积变化甚微,近多年来该地区的大春粮食播种面积变化甚微,近于常数,因而对产量的影响不大而失去其重要性。于常数,因而对产量的影响不大而失去其重要性。回归系数分析回归系数分析 在汽油中加入两种化学添加剂,观察它们对汽车消在汽油中加入两种化学添加剂,观察它们对汽车消耗耗1公升汽油所行里程的

13、影响,共进行公升汽油所行里程的影响,共进行9次试验,得到次试验,得到里程里程Y与两种添加剂用量与两种添加剂用量X1、X2之间数据如下:之间数据如下:xi1010120231xi2001102213yi15.8 16.0 15.9 16.2 16.5 16.3 16.8 17.4 17.2试求里程试求里程Y关于关于X1、X2的的经验线性回归方程,并求经验线性回归方程,并求误差方差误差方差2的无偏估计值。的无偏估计值。例例.概率论与数理统计概率论与数理统计P280 例例9.3.1检验说明线性关系显著检验说明线性关系显著结果:在实际问题中,常会遇到变量之间关系不是线性的在实际问题中,常会遇到变量之间

14、关系不是线性的相关关系,而是某种曲线的非线性相关关系。此时首相关关系,而是某种曲线的非线性相关关系。此时首先要确定回归函数的类型,其原则是:先要确定回归函数的类型,其原则是:1.根据问题的专业知识或经验确定根据问题的专业知识或经验确定2.根据观测数据的散点图确定根据观测数据的散点图确定常选曲线类型:常选曲线类型:双曲线、幂函数曲线、对数曲线、指数曲线、双曲线、幂函数曲线、对数曲线、指数曲线、倒数指数曲线、倒数指数曲线、S形曲线形曲线三、非线性回归三、非线性回归鼠鼠标标在在选选项项上上点点击击右右键键可可看看到到相相应应模模型型类类型型操作步骤:AnalyzeRegression Curve Estimation结合结合SPSS的曲线模型选择:的曲线模型选择:测量测量13个样品中某种金属含量个样品中某种金属含量Y与该样品采集点距与该样品采集点距中心观测点的距离中心观测点的距离X,有如下观测值:有如下观测值:xi23457810yi106.42108.20109.58109.50110.00109.931

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1