ImageVerifierCode 换一换
格式:DOCX , 页数:13 ,大小:710.38KB ,
资源ID:15494289      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/15494289.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ALD技术的发展与应用Word格式文档下载.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

ALD技术的发展与应用Word格式文档下载.docx

1、Abstract:The latest development of atomic layer deposition(ALD)technology was tentatively reviewed .ALD has been widely used in fabrication of electronics chips because ALD is capable of depositing highly pure homogenous films with well-controlled film thickness and chemical contents .The discus-sio

2、ns focused on :i)the principle of ALD technology ,its characteristics,and technical advantages ;ii)the mechanisms of chemical self-limiting(CS) and possible ways to achieve ALD , such as thermal-ALD(T-ALD), plasma-enhanced ALD(PE-ALD), electro chemical ALD(EC-ALD), and etc.i;ii)its applications in s

3、ynthesis ofhigh k materials , interconnecting materials for integrated circuit(IC).The development trends of ALD technology and its potential applications were also briefly discussed.Keyword:ALD ;Film-Deposition ; high-k material ; Cu-Interconnecting一、引言随着半导体工艺的不断发展,基于微结构的集成期间在进一步微型化和集成化,特征尺寸已经缩小到了亚

4、微米和纳米量级。芯片尺寸以及线宽的不断缩小、功能的不断提升成为半导体制造业技术的关键,特别是对薄膜的要求日益增加,例如薄膜厚度的均匀性和质量的严格要求。这就使得传统的CVD沉积技术,已很难有效地精确控制薄膜特性及满足日益严苛的工艺技术要求,特别是随着复杂高深宽比和多孔纳米结构的应用【1】。目前具有发展潜力的一种技术就是原子层沉积(AtomicLayer Deposition,ALD)。原子层沉积技术 (Atomic Layer Deposition;ALD),最初称为原子层外延(Atomic Layer Epitaxy, ALE),也称为原子层化学气相沉积 (Atomic Layer Chem

5、ical Vapor Deposition,ALCVD)。其产生可以追溯到芬兰科学家Suntolabo在20世纪六、七十年代的研究工作。20世纪80年代后期,采用ALD 技术生长族和族单晶化合物以及制备有序异质超晶格而受到关注,但由于这一工艺涉及复杂表面化学过程和较低沉积温度,并没有获得实质性的突破。20世纪90年代中后期,随着微米和深亚微米芯片技术的发展,集成器件进一步微型化,结构进一步复杂化,相比其他传统薄膜制备技术,ALD技术在加工三维高深宽比微纳结构超薄膜上的优势逐渐体现。自2001年国际半导体工业协会(ITRS)将ALD与金属有机化学气相沉积(MOCVD)、等离子体增强化学气相沉积(

6、PECVD)并列作为与微电子工艺兼容的候选技术以来,其发展势头强劲,赢得众多科研人员的关注【2】,已经成为新一代微纳器件功能薄膜制备中的一项关键技术,为制造低成本、超精细的微纳器件创造了条件。如图1所示,根据数据,从2004-2015年,ALD设备的市场份额每年增加约22%。同时表1,也列出了现在以及未来,ALD和PEALD技术可能的微电子应用范围【3】。图1:20042015年,ALD设备的市场份额表1:ALD和PEALD在微电子领域的发展趋势二、原子层沉积技术的原理ALD沉积技术,本质上是CVD技术的一种,但是又与传统的CVD技术不同。它是一种在速率可控制的条件下,利用反应气体与基板之间的

7、气固相反应,来完成工艺的需求;将前驱体气体和反应气体脉冲交替性的通入反应腔体,在沉积基体上化学吸附或者反应,一层一层的生长单原子膜的方法。ALD技术的主要优点:(1)前驱体是饱和化学吸附,保证生成大面积均匀性的薄膜(2)可生成极好的三维保形性化学计量薄膜,作为台阶覆盖和纳米孔材料的涂层(3)可轻易进行掺杂和界面修正(4)可以沉积多组份纳米薄片和混合氧化物(5)薄膜生长可在低温(室温到400)下进行(6)固有的沉积均匀性,易于缩放,可直接按比例放大(7)可以通过控制反应周期数简单精确地控制薄膜的厚度,形成达到原子层厚度精度的薄膜(8)对尘埃相对不敏感,薄膜可在尘埃颗粒下生长(9)排除气相反应(1

8、0)可广泛适用于各种形状的基底(11)不需要控制反应物流量的均一性一个ALD沉淀周期可以分为4个步骤:(1)第一种反应前驱体与基片表面发生化学吸附或者反应;(2)用惰性气体将多余的前驱体和副产物清除出反应腔体;(3)第二种反应前驱体与基片表面的第一种前驱体发生化学反应,生成薄膜;(4)反应完全后,在用惰性气体将多余的前驱体以及副产物清除出腔体。每一个生长周期只能生长单原子层薄膜,从而可以实现对趁机厚度的精确控制。由于可完成精度较高的工艺,因此被视为先进半导体工艺技术的发展关键环节之一。图2:一个ALD的沉淀周期ALD技术沉淀Al2O3:(1)对羟基硅表面形成三甲基铝化学吸附;(2)三甲基铝反应

9、产生CH4,通入惰性气体吹扫出多余气体;(3)三甲基铝与水蒸气反应;(4)之后,吹入更多惰性气体去除三甲基铝;(5)重复ALD过程,形成Al2O3:薄膜。图3 用ALD沉淀Al2O3的制备过程ALD 技术对化学前驱物的要求与适用于 CVD的那些材料不同。前躯体起着至关重要的作用, 通常它需满足以下条件:(1)挥发性好(易液化)。以此降低对整个工艺条件的需求。(2)高反应性。因为高反应性前驱体应能迅速发生化学吸附, 或快速发生有效的反应, 可以保证使表面膜具有高的纯度, 并避免在反应器中发生气相反应而增加薄膜缺陷。(3)良好的化学稳定性。反应前驱体必须有足够好的化学稳定性, 在最高的工艺温度条件

10、下不会在反应器和衬底材料表面发生自分解。(4)不会对薄膜或基片造成腐蚀且反应产物呈惰性。这样反应产物不会腐蚀或溶解衬底及薄膜,不会再吸附到膜层表面而阻碍自限制薄膜的继续生长, 否则将阻碍自限制薄膜的生长。(5)液体或气体为佳。这样可以避免物料结块,以免发生堵塞或结垢等问题。(6)材料没有毒性, 防止发生环境污染。图4自约束和非自约束状态时的理论生长速度ALD工艺与衬底表面前驱物的化学性质关系极大。特别是为了获得好的粘附性和形貌必须有较高的反应性,不过在淀积单原子层过程中要阻止再进入反应位置的真正自约束生长。在原子层沉积过程中,新一层原子膜的化学反应是直接与之前一层相关联的,这种方式使每次反应只

11、沉积一层原子。这种自限制性特征正是ALD 技术的基础。不断重复这种自限制反应直至制备出所需厚度的薄膜。表2中列出了ALD 的特征、对薄膜沉积的内在影响及其实际应用中的优势。表 2 ALD 的特征、对薄膜沉积的内在影响及其实际应用中的优势ALD特征对沉积薄膜的内在影响实际应用中的优势自约束的表面反应薄膜厚度只取决于循环次数精确控制薄膜厚度, 形成达到原子层厚度精度的薄膜前驱物是交替通入反应室以精确控制薄膜成分, 避免了有害物质的污染前驱体是饱和化学吸附很好的台阶覆盖率及大面积厚度均匀性连续反应薄膜无针孔、密度高三、ALD沉积技术的发展41T-ALD热处理原子层沉积(Thermal-ALD , T

12、-ALD)法是传统的、现在仍广泛使用的ALD 方法。它是利用加热法来实现ALD 的技术。2. PE-ALD定义:等离子体增强(Plasma-Enhanced ALD , PE-ALD)工艺是等离子体辅助和ALD 技术的结合。通过等离子体离解单体或反应气体, 提供反应所需的活性基团, 替代原来ALD 技术中的加热。过程:在沉积温度下互不发生反应的互补反应源在同一时间被引入到反应室, 然后反应源关闭并净化反应室, 接着施加一个直接的等离子脉冲, 这个等离子体环境产生高活性自由基并与吸附于衬底的反应物反应。关闭等离子可迅速清除活性自由基源, 反应室中一直流过的清洁气体将清除过剩自由基和反应副产物。常

13、见的三种设备构造:自由基增强ALD、直接等离子体沉积和远程等离子体沉积。图5:自由基增强ALD 设备构造示意图图6:直接等离子体ALD设备构造示意图图7:远程等离子体ALD设备构造示意图与T-ALD相比,PE-ALD具有更多优势:(1)具有更快的沉积速率和较低的沉积时间(图7)(2)降低了薄膜生长所需的温度。(3)单体可选择性强(4)可以生长出优异的金属薄膜和金属氮化物,例如Ti ,Ta 和TaN等, 而T-ALD 很难做到。图8:T-ALD与PE-ALD沉淀时间的比较此外, 利用PE-ALD 生长的薄膜比T-ALD 生长的薄膜还具有更加优异的性质, 如较高的薄膜密度、低的杂质含量、优异的电学

14、性能。图8给出了在硅衬底上分别用T-ALD 和PE-ALD 生长的氧化镧的电学性能曲线, 用PE-ALD 生长的MOS 结构相比热ALD 具有较大的积累态电容和较小的界面态密度5。图9:T-ALD 与 PE-ALD生长氧化镧的电学特性3.EC-ALD基本思想:将电化学沉积和ALD 技术相结合,用电位控制表面限制反应, 通过交替欠电位沉积化合物组分元素的原子层来形成化合物, 又可以通过欠电位沉积不同化合物的薄层而形成超晶格。原理:将表面限制反应推广到化合物中不同元素的单ALD , 利用欠电位沉积形成化合物组分元素的原子层, 再由组分元素的单原子层相继交替沉积从而沉积形成化合物薄膜。电化学原子层沉积(Electrochemical atomic layer deposition , EC-ALD)技术结合了欠电位沉积和ALD技术, 也融合了二者的优点, 与传统的薄膜制备方法相比EC-ALD 主要有以下优点 :(1)EC-ALE 法所用的主要设备有三电极电化学反应池恒电位仪和计算机, 工艺设备投资相对小, 降低了

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1