1、主要对车辆地理位置、速度、行驶区域的实时监控,同时满足以上监控信息的存档和历史调用。远程诊断:主要对车辆CAN总线数据流、模拟量采集数据流进行实时读取和记录,同时应支持DTC故障码读取和清除,并能对车辆控制器部分参数设置进行远程修改。扩展功能:作为诊断功能的补充,系统还应考虑视频数据的记录和与其他采集数据的同步。1.2系统性能设计系统设计时应考虑以下方面的性能:l 兼容性:对汽车CAN总线兼容,能够与多路不同波特率的CAN进行通讯。l 通用性: 要求系统能够在跨品牌多车型上使用。l 灵活性:用户能够根据需求灵活配置采集信号的数量和频率。l 经济性:系统应具备较低的材料成本和使用成本。l 可靠性
2、:硬件可靠性主要针对车载终端能够满足在振动、高低温的条件下长时间不间断工作的要求;软件则要求数据存储发送完整,调用可靠。l 能耗管理:要求车载系统工作时能耗较低,在车辆停驶时能进入休眠状态,并能快速“唤醒”。l 数据精度:要求车载系统在远程通讯带宽内尽量高的数据采样精度。2系统结构方案完整的远程诊断监控系统由车载终端、远程数据通讯和数据监控中心组成,车载终端接入汽车CAN网络,采集汽车实时数据,车载终端中的GPS接收模块获取车辆地理位置数据,然后将信息进行数据封装处理,通过无线网络(GPRS/CDMA/3G)接入Internet传输到数据中心,用户通过访问数据中心服务器实现双向交互。本章节将对
3、某监控诊断系统实现方案的软件和硬件系统进行逐一说明,系统架构如图1所示,工作流程见图2:图1 远程监控诊断系统架构图2 远程监控诊断系统工作流程2.1车载终端模块化的车载终端是远程诊断系统的重要组成部分,如图3所示主要模块包括中央控制器MCU GPS接收模块GPRS无线通讯模块CAN模块存储模块电源管理模块显示终端。图3 车载终端模块系统框图2.1.1嵌入式微控制器MCUMCU微控制器是车载终端的核心模块之一,一般选用AMR构架的嵌入式微处理器,本实现方案中采用三星公司16/32 RISC嵌入式S3C44BOX微控制器器,芯片采用2.5V的ARM7TDMI内核,最高工作在66MHz,芯片内置包
4、含带有8K缓存。512K字节外置Flash用以运行和存储操作系统代码,8M字节的SDRAM用以缓存采集的数据。处理器运行C/OS II实时操作系统,操作系统主要完成1任务管理2内存管理3硬件管理4定时服务2.1.2 GPS模块本系统的GPS模块采用Modulestek Inc.的SiRF Star III 接收芯片,这是一款高精度即插即用的低能耗芯片,采用直流3.0V供电,具备20个卫星信道,定位信息接收频率为1Hz,采用DGPS纠偏后水平定位精度为2.5m,速度精度达到0.01m/s,其输出数据格式遵循NEMA0813协议。GPS模块用于不间断地理位置信息采集。2.1.3 GPRS通信模块市
5、面上有很多种用于手机的GPRS模块都可以完成通讯功能。与本系统采用HUAWEI EM310 双频EGSM900/GSM1800无线模块,支持最大下行数据传输速率85.6Kbps,最大上行数据传输速率42.8Kbps。通讯模块通过UART总线通用异步接收/发送接口与中央处理芯片进行连接。其功能是传送的汽车故障诊断仪测量的数据信息和GPS状态信息,并且将服务器发送的操作指令和诊断结果传回车载模块。2.1.4 CAN诊断模块为适应汽车产品多路CAN的发展趋势,远程诊断系统考虑采用3路CAN兼容,其中2路用来适配汽车上不同波特率的CAN总线,其通讯波特率可通过配置文件进行设置;另外一路预留给外接数据采
6、集器用于模拟量输入。系统采用三组PHILIPS公司SJA1000 CAN控制器芯片和Texas Instrument公司的SN65HVD230D CAN收发器芯片组合达到多路CAN采集功能,通过设置SJA1000的总线定时寄存器可设置对车辆CAN总线的采样频率,常用的采样频率为1Mb/s。2.1.5电源管理模块用于对车载终端进行能耗管理,控制各模块的唤醒和休眠,以适应长时间、不同条件下的使用需求。系统应支持3种休眠和唤醒方式:1本地休眠/唤醒:通过检测点火钥匙打开/关闭系统。2 远程休眠/唤醒:接收短信打开/关闭系统 3总线休眠/唤醒:收到CAN信号打开/关闭系统。2.1.6存储模块为了将所有
7、采集数据流无遗漏地记录,弥补GPRS传输带宽的限制不足,系统设计了SD-CARD存储模块,通过RS232串口将所有数据都存储到SD卡中,存储格式为FAT32文件系统格式,最高支持8G存储容量SD卡。2.2.数据中心后台数据中心由数据通讯单元、数据库服务器和WEB服务组成。数据通讯单元包括多台通信服务器和负载均衡服务器组成,如图4。通信服务器与多个GPRS模块建立连接并接收数据流并解析;负载均衡服务器计算各通讯服务器负载,将超出负载的请求转移给其它通讯服务器。图4 数据中心通讯单元数据库服务器运行mySQL数据库,按功能划分为2个数据库,一个保存终端上传的采集信号数据,另一个用于保存基本配置信息
8、如用户的ID,终端ID,终端DBC配置文件。Web服务通过一台IIS服务器实现,用户通过浏览器访问IIS服务器ASP网页,可以实现数据的Web访问。2.3设备接口诊断设备接口:目前主要通过符合ISO 15031-3的OBDII标准诊断A型接口(图5即通俗意义的故障诊断口)进行数据读取和记录。图5 OBDII标准诊断口车载模块显示设备接口:全功能的远程监控诊断系统应考虑车载模块的交互界面,通过LEMN端口可连接触摸式液晶显示屏,用以实地读取测量数据和配置模块。视频输入接口:模块还应考虑视频输入端口,连接摄像机,摄像头等视频设备,视频数据与CAN数据和模拟量数据同步采集,存储时标记时间戳,调用时可
9、以同步回放。2.4客户端:终端用户以2种方式访问数据:1 Web访问:用户通过WEB访问数据中心服务器,可以实现对车载终端的远程监控,通过发送操作指令可以实现远程读取DTC故障码并远程清除,也可以实时查看数据和回放历史数据。2 本地数据处理:通过单机安装的本地数据分析处理软件(图6)可以直接读取SD卡上记录的历史数据,软件可以对数据进行截取、分析、对比和统计。图6 数据分析处理软件2.5系统采集的信号系统通过各模块的协同工作,可以采集三类信号:模块信号描述信号举例GPS模块地理位置信号l 经度,l 纬度,l 航速,l 航向,l UTC位置,l 标准时间CAN模块CAN总线报文,汽车上各个控制器
10、数据流,信号通道数量DBC文件配置决定l 发动机转速l 车速l 变速器档位l 空调开启信号l ABS轮速信号l 仪表剩余油量外接模拟量数采模拟量数据流,事先布设的传感器信号,信号数量由外接数据采集仪通道数决定l 底盘零件应变l 离合器踏板力l 转向力矩l 电池温度2.6 CAN总线信号采集配置原理为使系统对不同品牌汽车或车型平台具有通用性,系统设计采用DBC文件配置车载终端,针对不同汽车CAN总线,DBC文件定义不同的总线传输波特率、报文数量和属性,每条报文对应一个采集信号,不同车型都对应一个DBC文件,通过远程命令远程进行切换,也可以在模块安装时进行配置。DBC配置文件常用CANdb+协议文
11、件编辑器完成,也可以直接编写配置语句。下面将通过具体实例进行说明:如要采集某车型发动机控制器中的转速信号,可直接编写以下格式语句:BO_ 94 EMS_HSC_FrP00: 8 Vector_XXXSG_ EngineSpeedHSC_TW : 7|160+ (0.15625,0) 0|10239.8 rpm Vector_XXX其中第一行描述控制器属性,l 94指控制器ID,l EMS_HSC_FrP00指控制器名字,意义为发动机控制器(Engine Management System)高速CAN上第00帧控制信号。l 8指数据帧时实际数据长度。第二行描述信号信息:信号由SG开头,Engin
12、eSpeedHSC是信号名称,意义为发动机转速信号,位于高速CAN上发布。TW定义为模块对此信号的处理条件,按照规则以“_T”结尾,则该信号变量将作为记录数据的触发条件。其中信号变量的值不为0时记录数据,如果为0,则暂停数据的记录。如果信号名字以_W结尾,表示该变量是需要通过GPRS上传至主站服务平台的,如果信号名字以_TW或_WT结尾,表示该信号既是触发变量,又是需要上传至主站服务平台。图例中EngineSpeedHSC_TW意指名称为EngineSpeedHSC的信号既要触发记录,又要上传主站平台。l 7标识此信号起始位。l 16标识信号长度为16bit。l 加号前的0表示此信号初始值为0。(0.15625,0)指乘积因子Factor为0.15625,偏移量OFFSET为0。此信号的计算值Value=Factor*Signal值+Offset。l 0|10239.8指信号输出范围最小值和最大值。l 引号中是此信号的单位为rpm。下一步:确定转速信号该车型CAN传输波特率,该车型CAN波特率有两种500K和250K,用户需根据要测量的信号通信速率写成以下语句。BA_DEF_ HBaudrate ENUM 50000,1000001250002500005000001000000;LBaudrate
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1