1、此类问题没有明确的条件和结论,并且符合条件的结论具有多样性,需将已知的信息集中进行分析,探索问题成立所必须具备的条件或特定的条件应该有什么结论,通过这一思维活动得出事物内在联系,从而把握事物的整体性和一般性.类型一条件开放与探索型问题(1)四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:ADBC;ADBC;OAOC;OBOD从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A3种 B4种 C5种 D6种【解后感悟】判断一个四边形是平行四边形的基本依据是:平行四边形的定义及其判定定理解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的结
2、论,挖掘它的内在联系,向“纵、横、深、广”拓展,从而寻找出添加的条件(2)(2016河北)如图,AOB120,OP平分AOB,且OP2.若点M,N分别在OA,OB上,且PMN为等边三角形,则满足上述条件的PMN有()A1个 B2个 C3个 D3个以上【解后感悟】本题运用等边三角形的判定和性质、全等三角形的判定和性质、角平分线的性质等知识的开放性问题,解题的关键是正确添加辅助线,构造全等三角形1(1)请举反例说明“对于任意实数x,x25x5的值总是正数”是假命题,你举的反例是x(写出一个x的值即可)(2)(2015无锡)某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应
3、的优惠方法:如果不超过500元,则不予优惠;如果超过500元,但不超过800元,则按购物总额给予8折优惠;如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款元类型二结论开放与探索型问题(2016绍兴)如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形(1)若固定三根木条AB,BC,AD不动,ABAD2cm,BC5cm,如图,量得第四根木条CD5cm,判断此时B与D是否相等,并说明理由;(2)若固定一根木条AB不动,AB2cm,量得木条CD
4、5cm,如果木条AD,BC的长度不变,当点D移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A、C、D能构成周长为30cm的三角形,求出木条AD,BC的长度【解后感悟】此题是动态开放探究型问题,通过画图转化为所求的图形,利用全等三角形、二元一次方程组和三角形三边关系解决问题2(2015丽水)如图,在方格纸中,线段a,b,c,d的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有()A3种 B6种 C8种 D12种3(2015台州)关于x的方程mx2xm10,有以下三个结论:当m0时,方程只有一个实数解;当m0时,方
5、程有两个不等的实数解;无论m取何值,方程都有一个负数解,其中正确的是(填序号)类型三条件、结论开放与探索型问题(2015绍兴)正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A按顺时针方向旋转,记旋转角DAG,其中0180,连结DF,BF,如图(1)若0,则DFBF,请加以证明;(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由【解后感悟】本题通过条件的改变寻求新的结论,从特殊到一般来探求问题即0的情况,再逆命题的探究,以及补充一个条件后能使该
6、命题为真命题的探究逐步画图来解决问题4(2015南京)如图,ABCD,点E,F分别在AB,CD上,连结EF,AEF、CFE的平分线交于点G,BEF、DFE的平分线交于点H.(1)求证:四边形EGFH是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G作MNEF,分别交AB,CD于点M,N,过H作PQEF,分别交AB,CD于点P,Q,得到四边形MNQP,此时,他猜想四边形MNQP是菱形,请在下列框中补全他的证明思路由ABCD,MNEF,PQEF,易证四边形MNQP是平行四边形,要证MNQP是菱形,只要证MNNQ,由已知条件_,MNEF故只要证GMFQ,即证MGEQFH,易证_,_,故只要证
7、MGEQFH,易证MGEGEF,QFHEFH,_,即可得证类型四过程开放与探索型问题(1)如图,正方形ABCD中,点E,F分别在边BC,CD上,EAF45,延长CD到点G,使DGBE,连结EF,AG.求证:EFFG.(2)如图,等腰直角三角形ABC中,BAC90,ABAC,点M,N在边BC上,且MAN45,若BM1,CN3,求MN的长 【解后感悟】 本题是几何综合题,通过观察、比较、分析、综合及猜想,运用正方形、全等三角形、等腰直角三角形以及勾股定理等几何图形的性质,经过归纳、类比、联想等推理的手段,得出正确的结论5(2015河南)如图,AB是半圆O的直径,点P是半圆上不与点A、B重合的一个动
8、点,延长BP到点C,使PCPB,D是AC的中点,连结PD、PO.CDPPOB;(2)填空:若AB4,则四边形AOPD的最大面积为_;连结OD,当PBA的度数为_时,四边形BPDO是菱形6(2017绍兴)已知ABC,ABAC,D为直线BC上一点,E为直线AC上一点,ADAE,设BAD,CDE.(1)如图,若点D在线段BC上,点E在线段AC上如果ABC60,ADE70,那么_,_;求,之间的关系式;(2)是否存在不同于以上中的,之间的关系式?若存在,求出这个关系式(求出一个即可);若不存在,说明理由【经验积累题】(2015丽水)如图,在矩形ABCD中,E为CD的中点,F为BE上的一点,连结CF并延
9、长交AB于点M,MNCM交射线AD于点N.(1)当F为BE中点时,求证:AMCE;(2)若2,求的值;(3)若n,当n为何值时,MNBE?【方法与对策】本题是几何综合题,运用了相似三角形的判定与性质、全等三角形的判定与性质、矩形的性质、同角的余角相等、三角形外角的性质等知识,本题三问的解题思路是一致的;即通过特殊到一般,利用全等三角形或相似三角形解决问题,这是中考常见的压轴题型【考虑欠周,容易漏解】在一服装厂里有大量形状为等腰三角形的边角布料(如图)现找出其中的一种,测得C90,ACBC4,现要从这种三角形中剪出一种扇形,做成不同形状的玩具,使扇形的边缘半径恰好都在ABC的边上,且扇形与ABC
10、的其他边相切请设计出所有可能符合题意的方案示意图,并求出扇形的半径(只要求画出图形,并直接写出扇形半径)参考答案【例题精析】例1(1)组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形;可证明ADOCBO,进而得到ADCB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;可证明ADOCBO,进而得到ADCB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;故选:B.(2)如图在OA、OB上截取OEOFOP,作MPN60.OP平分
11、AOB,EOPPOF60,OPOEOF,OPE,OPF是等边三角形,EPOP,EPOOEPPONMPN60,EPMOPN,在PEM和PON中,PEMPON.PMPN,MPN60,PMN是等边三角形,只要MPN60,PMN就是等边三角形,故这样的三角形有无数个故选D.例2(1)相等理由:连结AC,在ACD和ACB中,ACDACB,BD.(2) 设ADx,BCy,当点C在点D右侧时,解得:,当点C在点D左侧时,解得:,此时AC17,CD5,AD8,5817,不合题意,AD13cm,BC10cm.例3(1)证明:如图1,正方形ABCD和正方形AEFG中,GFEF,AGAE,ADAB,DGBE.又DG
12、FBEF90,DGFBEF(SAS)DFBF. (2)反例图形如图2: (3)不唯一,如点F在正方形ABCD内,或180.例4(1)证明:ABEADG,ADAB,在ABE和ADG中,ABEADG(SAS),BAEDAG,AEAG,EAG90,在FAE和FAG中,FAEFAG(SAS),EFFG;(2)如图2,过点C作CEBC,垂足为点C,截取CE,使CEBM,连结AE、EN,ABAC,BAC90,BACB45,CEBC,ACEB45,在ABM和ACE中,ABMACE(SAS)AMAE,BAMCAE.BAC90,MAN45,BAMCAN45.于是,由BAMCAE,得MANEAN45.在MAN和EAN中,MANEAN(SAS)MNEN.在RtENC中,由勾股定理,得EN2EC2NC2.MN2BM2NC2.BM1,CN3,MN21232,MN.【变式拓展】1(1)2(2)838或9102.B3.4.(1)EH平分BEF,FEHBEF,FH平分DFE,EFHDFE,ABCD,BEFDFE180,FEH
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1