1、可使用方差分析法、 均值 和 R 法进行交叉量具 R&R 研究。其中使用均值 和 R 法时计算更为简单,而方差分析法则更为准确。在进行量具 R&R 研究时,测量应按随机顺序进行,所选部件在可能的响应范围内提供了代表性样本,这一点非常重要。1.1.1 数据说明选择了十个表示过程变异预期极差的部件。由三名操作员按照随机顺序测量每个部件的厚度,每个部件测量两次。 1.1.2 方差分析法与 均值-R 法的比较由于利用控制图进行计算比较简单,因而首先产生了 均值-R 法。但是,在某些方面方差分析法更为准确:(1)利用方差分析法可以研究操作员和部件之间会产生哪些交互作用,而 均值-R 法却不同。(2)利用
2、方差分析法所用的方差分量对变异性进行的估计比使用均值-R 法的极差进行估计更准确。1.1.3 量具 R&R 的破坏性实验R 研究的主要目的之一是要查看同一个操作员或多个操作员对同一个部件的重复测量结果是否相似。如果要进行破坏性实验,则无法进行重复测量。要对破坏性测试应用 Minitab 的量具 R&R 研究,则需要假定某些部件“完全相同”,可视为同一个部件。如果假定是合理的,则可将同一批产品中的部件当作同一个部件。如果上述情形满足该条件,则可以根据部件具体的测试方法选择使用交叉量具 R&R 研究或嵌套量具 R&如果每个操作员都要对每批部件进行检验,则使用交叉量具R&R 研究比较适合。如果仅由一
3、名操作员检验每批部件,则可使用嵌套量具 R&2. 方差分析法 包含交互作用的双因子方差分析通过双因子方差分析(方差分析)可以知道两个不同水平的因子是否可产生不同的响应变量平均值。双因子方差分析表中列出了以下产生变异性的变异源:(1)部件,它表示由于测量不同的部件而产生的变异性。(2)操作员,它表示由于进行测量的操作员不同而产生的变异性。(3)操作员*部件,它表示测量过程中由于操作员和部件的不同组合而产生的变异性。如果操作员*部件项的 p 值大于 0.25,方差分析将在无交互作用项的情况下重新运行。(4)误差或重复性,它表示在测量过程中不是由部件、操作员或者操作员与部件交互作用产生的变异性。您希
4、望看到每一种变异源对应的 p 值是否低于所选的显著性水平。这说明该变异源是导致产生测量变异性的主要原因。对于部件数据而言,当显著性水平 a = 0.05 时,通过操作员p 值 (P = 0.033) 可以知道导致厚度平均值产生显著差异的原因在于三位不同的测量操作员。此处,由于 P = 0.000 小于 0.25,因此包括操作员*部件项。在量具 R&R 中将考虑操作员和部件之间的交互作用。方差分析法:包含交互作用的双因子方差分析表来源 自由度 SS MS F P部件 9 2.05871 0.228745 39.7178 0.000操作员 2 0.04800 0.024000 4.1672 0.0
5、33部件 * 操作员 18 0.10367 0.005759 4.4588 0.000重复性 30 0.03875 0.001292合计 59 2.24913删除交互作用项选定的 Alpha = 0.252.1.1 数据说明2.1.2 方差分析法与 均值-R 法的比较2.1.3 自由度计算通常,DF 用于测量计算每个SS 时可用的“独立”信息数量。(1) 合计 = n - 1,其中 n = 观测值总数(2)DF 部件 = a -1,其中 a = 部件数目(3)DF 操作员 = b - 1,其中 b = 操作员人数(4)DF 操作员*部件 = (a-1)*(b-1)(5)DF 重复性 = n -
6、 (a*b)注 DF 合计 = DF 部件 + DF 操作员 + DF 操作员*部件 + DF 重复性2.1.4 F 统计量计算F 统计量用于确定不同水平的因子是否会导致响应变量的值发生变化。(1)F 部件 = MS 部件 / MS 操作员*部件(2)F 操作员 = MS 操作员 / MS 操作员*部件(3)F 操作员*部件 = MS操作员*部件 / MS 重复性其中,MS 表示每个因子的均方 (MS)。F 统计量越大,该因子在响应或测量变量的变异性中所起的作用就越大。2.2 变异性R 输出结果显示按以下变异源分析总变异性的情况:合计量具 R&R,它可分为- 重复性,这是指同一操作员多次测量同
7、一部件时产生的测量变异性。- 再现性(可进一步分为操作员和操作员*部件分量),这是指由不同操作员测量同一部件产生的测量变异性。-部件之间,这是指由于测量不同的部件而产生的变异性。理想的情况是重复性与再现性几乎不产生变异性,绝大部分变异性应该由部件之间(部件之间)的测量差异引起。具体表现为:(1)重复性与再现性变异源只占非常低的 %贡献。(2)由部件之间变异源导致的变异性占较大的 %贡献。%贡献、%研究变异、%公差和 %过程等列可提供极为重要的信息。通过这些列可以看出某一特定变异源在引起某种变异性中所起的作用百分比。通常,合计量具 R&R 在研究变异中所占的百分比应该低于 30%,最好是低于 1
8、0%。对于部件数据,合计量具 R&R 在研究变异中所占的百分比为 32.66%。此时就需要采取纠正措施。具体措施包括对操作员进行培训或者使用更好的量具。如果输入的是过程公差、规格上限或下限或者历史标准差,那么 %公差或 %过程列将比 %研究变异更为重要。方差分量 贡献率合计量具 R&R 0.0044375 10.67 重复性 0.0012917 3.10 再现性 0.0031458 7.56 操作员 0.0009120 2.19 操作员*部件 0.0022338 5.37部件间 0.0371644 89.33合计变异 0.0416019 100.00过程公差 = 1历史标准差 = 0.1747
9、57 研究变异 %研究变 %公差 %过程来源 标准差(SD) (6 * SD) 异 (%SV) (SV/Toler) (SV/Proc)R 0.066615 0.39969 32.66 39.97 38.12 重复性 0.035940 0.21564 17.62 21.56 20.57 再现性 0.056088 0.33653 27.50 33.65 32.09 操作员 0.030200 0.18120 14.81 18.12 17.28 操作员*部件 0.047263 0.28358 23.17 28.36 27.04部件间 0.192781 1.15668 94.52 115.67 110
10、.31合计变异 0.203965 1.22379 100.00 122.38 116.712.2.2 可区分类别数该数字指过程当前能够区分的部件的不同类别数目。R 越低,该数字就越高。如果某个过程不能区分至少 5 种类型的部件,则该过程不合格。对于部件数据,测量系统只能区分 4 种不同部件。这需要进行一些改进。可区分的类别数 = 4 数据说明 方差分析法与 -R 法的比较由于利用控制图进行计算比较简单,因而首先产生了均值-R 法。(1)利用方差分析法可以研究操作员和部件之间会产生哪些交互作用,而均值-R法却不同。(2)利用方差分析法所用的方差分量对变异性进行的估计比使用 均值-R 法的极差进行
11、估计更准确。 测量系统辨别力测量系统辨别力是指检测测量特征的变化的能力。如果某个测量系统的辨别力不充分,它将无法准确测量过程变异或无法对单个部件的特征值(例如平均值)进行量化。下表为会话窗口输出中列出的可区分类别数表,通过它可帮助确定测量系统的测量能力。可区分类别数可提供:1 有关一致与不一致方面的信息2 - 4 不区分的控制图粗略估计过程参数和能力指数5 个或更多 控制图、过程参数和能力指数2.2.3 变异性- 再现性,这是指不同操作员测量同一部件时产生的测量变异性。部件之间,这是指由于测量不同的部件而产生的变异性。R 在研究变异中所占的百分比为 25.16%。该测量系统应该是合格的。 方差
12、分量 R 0.0020839 6.33 重复性 0.0011549 3.51 再现性 0.0009291 2.82部件间 0.0308271 93.67合计变异 0.0329111 100.00R 0.045650 0.27390 25.16 27.39 26.12 重复性 0.033983 0.20390 18.73 20.39 19.45 再现性 0.030481 0.18288 16.80 18.29 17.44部件间 0.175577 1.05346 96.78 105.35 100.47合计变异 0.181414 1.08848 100.00 108.85 103.81 可区分类别数对于部件数据,测量系统应该
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1