ImageVerifierCode 换一换
格式:DOCX , 页数:25 ,大小:326.44KB ,
资源ID:15067146      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/15067146.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(全等三角形教案Word格式.docx)为本站会员(b****2)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

全等三角形教案Word格式.docx

1、形状与大小都完全相同的两个图形就是全等形要是把两个图形放在一起,能够完全重合,就可以说明这两个图形的形状、大小相同概括全等形的准确定义:能够完全重合的两个图形叫做全等形请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义仔细阅读课本中“全等”符号表示的要求导入新课将ABC沿直线BC平移得DEF;将ABC沿BC翻折180得到DBC;将ABC旋转180得AED议一议:各图中的两个三角形全等吗?不难得出:ABCDEF,ABCDBC,ABCAED(注意强调书写时对应顶点字母写在对应的位置上)启示:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转

2、前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略观察与思考:寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?(引导学生从全等三角形可以完全重合出发找等量关系)得到全等三角形的性质:全等三角形的对应边相等 全等三角形的对应角相等例1如图,OCAOBD,C和B,A和D是对应顶点,说出这两个三角形中相等的边和角问题:OCAOBD,说明这两个三角形可以重合,思考通过怎样变换可以使两三角形重合?将OCA翻折可以使OCA与OBD重合因为C和B、A和D是对应顶点,所以C和B重合,A和D重合C=B;A=D;AOC=DOBAC=DB;OA=OD;OC=OB总结:两个全等的三角形经过一定

3、的转换可以重合一般是平移、翻转、旋转的方法例2如图,已知ABEACD,ADE=AED,B=C,指出其他的对应边和对应角分析:对应边和对应角只能从两个三角形中找,所以需将ABE和ACD从复杂的图形中分离出来根据位置元素来找:有相等元素,它们就是对应元素,然后再依据已知的对应元素找出其余的对应元素常用方法有:(1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边(2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角解:对应角为BAE和CAD对应边为AB与AC、AE与AD、BE与CD例3已知如图ABCADE,试找出对应边、对应角(由学生讨论完成)借鉴例2的方法,可以发现A=

4、A,在两个三角形中A的对边分别是BC和DE,所以BC和DE是一组对应边而AB与AE显然不重合,所以AB与AD是一组对应边,剩下的AC与AE自然是一组对应边了再根据对应边所对的角是对应角可得B与D是对应角,ACB与AED是对应角所以说对应边为AB与AD、AC与AE、BC与DE对应角为A与A、B与D、ACB与AED做法二:沿A与BC、DE交点O的连线将ABC翻折180后,它正好和ADE重合这时就可找到对应边为:AB与AD、AC与AE、BC与DE对应角为A与A、B与D、ACB与AED课堂练习:课本练习1课时小结通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用性质可以找到两个全等

5、三角形的对应元素这也是这节课大家要重点掌握的找对应元素的常用方法有两种:(一)从运动角度看1翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素2旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素3平移法:沿某一方向推移使两三角形重合来找对应元素(二)根据位置元素来推理1全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边2全等三角形对应边所对的角是对应角;作业1121 三角形全等的判定1三角形全等的“边边边”的条件2了解三角形的稳定性3经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程三角形全等的条件寻求三角形全等的条件创设情境,引入新课

6、出示投影片,回忆前面研究过的全等三角形已知ABCABC,找出其中相等的边与角图中相等的边是:AB=AB、BC=BC、AC=AC相等的角是:A=A、B=B、C=C展示课作前准备的三角形纸片,提出问题:你能画一个三角形与它全等吗?怎样画?(可以先量出三角形纸片的各边长和各个角的度数,再作出一个三角形使它的边、角分别和已知的三角形纸片的对应边、对应角相等这样作出的三角形一定与已知的三角形纸片全等)这是利用了全等三角形的定义来作图那么是否一定需要六个条件呢?条件能否尽可能少呢?现在我们就来探究这个问题1只给一个条件(一组对应边相等或一组对应角相等),画出的两个三角形一定全等吗?2给出两个条件画三角形时

7、,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做三角形一内角为30,一条边为3cm三角形两内角分别为30和50三角形两条边分别为4cm、6cm学生分组讨论、探索、归纳,最后以组为单位出示结果作补充交流结果展示:1只给定一条边时:只给定一个角时:2给出的两个条件可能是:一边一内角、两内角、两边可以发现按这些条件画出的三角形都不能保证一定全等给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有四种可能即:三内角、三条边、两边一内角、两内有一边在刚才的探索过程中,我们已经发现三内角不能保证三角形全等下面我们就来逐一探索其余的三种情况已知一个三角形的三条边长分别为6cm

8、、8cm、10cm你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗?1作图方法:先画一线段AB,使得AB=6cm,再分别以A、B为圆心,8cm、10cm为半径画弧,两弧交点记作C,连结线段AC、BC,就可以得到三角形ABC,使得它们的边长分别为AB=6cm,AC=8cm,BC=10cm2以小组为单位,把剪下的三角形重叠在一起,发现都能够重合这说明这些三角形都是全等的3特殊的三角形有这样的规律,要是任意画一个三角形ABC,根据前面作法,同样可以作出一个三角形ABC,使AB=AB、AC=AC、BC=BC将ABC剪下,发现两三角形重合这反映了一个规律:三边对应相等的两个三

9、角形全等,简写为“边边边”或“SSS”用上面的规律可以判断两个三角形全等判断两个三角形全等的推理过程,叫做证明三角形全等所以“SSS”是证明三角形全等的一个依据请看例题例如图,ABC是一个钢架,AB=AC,AD是连结点A与BC中点D的支架求证:ABDACD分析要证ABDACD,可以看这两个三角形的三条边是否对应相等证明:因为D是BC的中点所以BD=DC在ABD和ACD中所以ABDACD(SSS)生活实践的有关知识:用三根木条钉成三角形框架,它的大小和形状是固定不变的,而用四根木条钉成的框架,它的形状是可以改变的三角形的这个性质叫做三角形的稳定性所以日常生活中常利用三角形做支架就是利用三角形的稳

10、定性例如屋顶的人字梁、大桥钢架、索道支架等随堂练习如图,已知AC=FE、BC=DE,点A、D、B、F在一条直线上,AD=FB要用“边边边”证明ABCFDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?2课本练习本节课我们探索得到了三角形全等的条件,发现了证明三角形全等的一个规律SSS并利用它可以证明简单的三角形全等问题略活动与探索如图,一个六边形钢架ABCDEF由6条钢管连结而成,为使这一钢架稳固,请你用三条钢管连接使它不能活动,你能找出几种方法?本题的目的是让学生能够进一步理解三角形的稳定性在现实生活中的应用结果:(1)可从这六个顶点中的任意一个作对角线,

11、把这个六边形划分成四个三角形如图(1)为其中的一种(2)也可以把这个六边形划分成四个三角形如图(2)11.2.2 三角形全等的判定1三角形全等的“边角边”的条件2经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程3掌握三角形全等的“SS”条件,了解三角形的稳定性4能运用“SS”证明简单的三角形全等问题教学重点:教学难点:一、创设情境,复习提问1怎样的两个三角形是全等三角形?2全等三角形的性质?3指出图中各对全等三角形的对应边和对应角,并说明通过怎样的变换能使它们完全重合:图(1)中:ABDACE,AB与AC是对应边;图(2)中:ABCAED,AD与AC是对应边三角形全等的判定的

12、内容是什么?二、导入新课1三角形全等的判定(二)(1)全等三角形具有“对应边相等、对应角相等”的性质那么,怎样才能判定两个三角形全等呢?也就是说,具备什么条件的两个三角形能全等?是否需要已知“三条边相等和三个角对应相等”?现在我们用图形变换的方法研究下面的问题:如图2,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,ABO和CDO是否能完全重合呢?不难看出,这两个三角形有三对元素是相等的:AOCO,AOB COD,BODO如果把OAB绕着O点顺时针方向旋转,因为OAOC,所以可以使OA与OC重合;又因为AOB COD, OBOD,所以点B与点D重合这样ABO与CDO就完全重合(此外,

13、还可以图1(1)中的ACE绕着点A逆时针方向旋转CAB的度数,也将与ABD重合图1( 2)中的ABC绕着点A旋转,使AB与AE重合,再把ADE沿着AE(AB)翻折180两个三角形也可重合)由此,我们得到启发:判定两个三角形全等,不需要三条边对应相等和三个角对应相等而且,从上面的例子可以引起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等2上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:画DAE45,在AD、AE上分别取 B、C,使 AB3.1cm, AC2.8cm连结BC,得ABC按上述画法再画一个ABC(2)把ABC剪下来放到ABC上,观察ABC与ABC是否能够完全重合?3边角边公理有两边和它们的夹角对应相等的两

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1