1、解解 上述食谱问题就是一个典型的线性规划问题,上述食谱问题就是一个典型的线性规划问题,寻求以线性函数的最大(小)值为目标的数学模寻求以线性函数的最大(小)值为目标的数学模型型.它是指在一组线性的等式或不等式的约束条件下,它是指在一组线性的等式或不等式的约束条件下,线性规划模型的三种形式线性规划模型的三种形式线性规划模型的三种形式线性规划模型的三种形式 一般形式一般形式 目标函数目标函数 价值向量价值向量 价值系数价值系数 决策变量决策变量右端向量右端向量系系数数矩矩阵阵非负约束非负约束自由变量自由变量 规范形式规范形式 标准形式标准形式 三种形式的三种形式的LP问题全都是等价的,即一种问题全都
2、是等价的,即一种形式的形式的LP可以简单的变换为另一种形式的可以简单的变换为另一种形式的LP,且它们有相同的解且它们有相同的解.以下我们仅将一般形式化成规范形式和标准以下我们仅将一般形式化成规范形式和标准形式形式.目标函数的转化目标函数的转化 xoz-z约束条件和变量的转化约束条件和变量的转化 为为了了把把一一般般形形式式的的LP问问题题变变换换为为规规范范形形式式,我我们们必必须须消消除除等等式式约约束束和和符符号号无无限限制制变变量量.在在一一般形式的般形式的LP中,一个等式约束中,一个等式约束可用下述两个不等式约束去替代可用下述两个不等式约束去替代 这样就把一般形式的这样就把一般形式的L
3、P变换为规范形式变换为规范形式.对对于于一一个个无无符符号号限限制制变变量量 ,引引进进两两个个非非负负变量变量 和和 ,并设,并设为了把一般形式的为了把一般形式的为了把一般形式的为了把一般形式的LPLPLPLP问题变换为标准形式,问题变换为标准形式,问题变换为标准形式,问题变换为标准形式,必须消除其不等式约束和符号无限制变量必须消除其不等式约束和符号无限制变量必须消除其不等式约束和符号无限制变量必须消除其不等式约束和符号无限制变量.对于一个不等式约束对于一个不等式约束代替上述的不等式约束代替上述的不等式约束.对符号无限制变量的处理可按上述方法进行对符号无限制变量的处理可按上述方法进行.可引入
4、一个可引入一个剩余变量剩余变量 ,用用 对于不等式约束对于不等式约束 代替上述的不等式约束代替上述的不等式约束 这样就把一般形式的这样就把一般形式的LP变换为标准形式变换为标准形式.可引入一个可引入一个松弛变量松弛变量,用,用 针对标准形式的线性规划问题,其解的理论针对标准形式的线性规划问题,其解的理论分析已经很完备,在此基础上也提出了很好的算分析已经很完备,在此基础上也提出了很好的算 单纯形方法是线性规划问题的最为基础、也单纯形方法是线性规划问题的最为基础、也法法单纯形方法及其相应的变化形式(两阶段单纯形方法及其相应的变化形式(两阶段2.2 2.2 线性规划模型的求解线性规划模型的求解 法,
5、对偶单纯形法等)法,对偶单纯形法等).是最核心的算法。它是一个迭代算法,先从一个是最核心的算法。它是一个迭代算法,先从一个特殊的可行解(极点)出发,通过判别条件去判特殊的可行解(极点)出发,通过判别条件去判断该可行解是否为最优解(或问题无界),若不断该可行解是否为最优解(或问题无界),若不是最优解,则根据相应规则,迭代到下一个更好是最优解,则根据相应规则,迭代到下一个更好的可行解(极点),直到最优解(或问题无界)的可行解(极点),直到最优解(或问题无界).关于线性规划问题解的理论和单纯形法具体的求关于线性规划问题解的理论和单纯形法具体的求解过程可参见文献解过程可参见文献1.然后在实际应用中,特
6、别是数学建模过程中,然后在实际应用中,特别是数学建模过程中,遇到线性规划问题的求解,我们一般都是利用现遇到线性规划问题的求解,我们一般都是利用现有的软件进行求解,此时通常并不要求线性规划有的软件进行求解,此时通常并不要求线性规划问题是标准形式问题是标准形式.比较常用的求解线性规划模型比较常用的求解线性规划模型的软件包有的软件包有LINGO和和LINDO.LP问题的问题的Lindo输入范例输入范例MAX 3x1+2x2ST2)X143)X234)2x1+3x2总销量和总产量总销量和总产量总销量总销量.形式,我们总可以通过引入假想的销地或产地,形式,我们总可以通过引入假想的销地或产地,将不平衡的运
7、输问题转化为平衡的运输问题将不平衡的运输问题转化为平衡的运输问题.从从而,我们的重点就是解决平衡运输问题的求解而,我们的重点就是解决平衡运输问题的求解.显然,运输问题是一个标准的线性规划问题,显然,运输问题是一个标准的线性规划问题,因而当然可以运用单纯形方法求解因而当然可以运用单纯形方法求解.但由于平衡的但由于平衡的运输问题的特殊性质,它还可以用其它的一些特殊运输问题的特殊性质,它还可以用其它的一些特殊方法求解,其中最常用的就是表上作业法,该方法方法求解,其中最常用的就是表上作业法,该方法将单纯形法与平衡的运输问题的特殊性质结合起来,将单纯形法与平衡的运输问题的特殊性质结合起来,很方便地实行了
8、运输问题的求解很方便地实行了运输问题的求解.关于运输问题及关于运输问题及其解法的进一步介绍参加文献其解法的进一步介绍参加文献2.对于线性规划问题,如果要求其决策变量取对于线性规划问题,如果要求其决策变量取整数值,则称该问题为整数线性规划问题整数值,则称该问题为整数线性规划问题.平面法和分支定界法是两种常用的求解整数线性平面法和分支定界法是两种常用的求解整数线性 对于整数线性规划问题的求解,其难度和运对于整数线性规划问题的求解,其难度和运三、整数线性规划模型三、整数线性规划模型算量远大于同规模的线性规划问题算量远大于同规模的线性规划问题.Gomory割割规划问题的方法(见文献规划问题的方法(见文
9、献1).此外,同线性此外,同线性规规划模型一样,我们也可以运用划模型一样,我们也可以运用LINGO和和LINDO软软件包来求解整数线性规划模型件包来求解整数线性规划模型.以以1988年美国大学生数学建模竞赛年美国大学生数学建模竞赛B题为例,题为例,说明整数线性规划模型的建立及用说明整数线性规划模型的建立及用LINGO软件包如软件包如何求解整数线性规划模型。何求解整数线性规划模型。例例3.有七种规格的包装箱要装到两节铁路平板车有七种规格的包装箱要装到两节铁路平板车上去。包装箱的宽和高是一样的,但厚度(上去。包装箱的宽和高是一样的,但厚度(t,以,以cm 计)及重量(计)及重量(w,以,以kg计)
10、是不同的计)是不同的.表表1给出给出了每种包装箱的厚度、重量以及数量。每节平板了每种包装箱的厚度、重量以及数量。每节平板车有车有10.2m 长的地方可用来装包装箱(像面包片长的地方可用来装包装箱(像面包片那样),载重为那样),载重为40t.由于当地货运的限制,对于由于当地货运的限制,对于C5,C6,C7 类包装箱的总数有一个特别的限制:这类包装箱的总数有一个特别的限制:这类箱子所占的空间(厚度)不能超过类箱子所占的空间(厚度)不能超过302.7cm.试试把包装箱装到平板车上,使得浪费的空间最小把包装箱装到平板车上,使得浪费的空间最小.种类种类C1C2C3C4C5C6 C7t/cm48.753.
11、061.372.048.752.064.0w/kg2000 3000 10005004000 2000 1000n/件件8796648 为在第为在第 节车上装载第节车上装载第 件包装箱的件包装箱的解解 令令 下面我们建立该问题的整数线性规划模型。下面我们建立该问题的整数线性规划模型。1)约束条件约束条件两节车的装箱数不能超过需要装的件数,即:两节车的装箱数不能超过需要装的件数,即:每节车可装的长度不能超过车能提供的长度:每节车可装的重量不超过车能够承受的重量:对于对于C5,C6,C7类包装箱的总数的特别限制:类包装箱的总数的特别限制:2)目标函数目标函数浪费的空间最小,即包装箱的总厚度最大:浪
12、费的空间最小,即包装箱的总厚度最大:3)整数线性规划模型整数线性规划模型由上一步中的求解结果可以看出,由上一步中的求解结果可以看出,4)模型求解模型求解运用运用LINGO软件求解得到:软件求解得到:5)最优解的分析说明最优解的分析说明的装车方案,此时装箱的总长度为的装车方案,此时装箱的总长度为1019.7cm,两节车共装箱的总长度为两节车共装箱的总长度为2039.4cm.即为最优即为最优 但是,上述求解结果只是其中一种最优的但是,上述求解结果只是其中一种最优的装车方案,即此答案并不唯一装车方案,即此答案并不唯一.ILP问题的问题的Lindo输入范例之一输入范例之一MAX 3x1+2x2ST2)X143)X234)2x1+3x212ENDGIN2(!表示前两个变量为一般整数表示前两个变量为一般整数)0-1整数规划是整数规划的特殊情形,它要求整数规划是整数规划的特殊情形,它要求线性规划模型中的决策变量线性规划模型中的决策变量x
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1