1、分析 双曲线的标准方程有两种形式:(,)或(,),可以讨论解决。也可以应用下面的方法解决。解设双曲线方程为()。因为所求双曲线经过点,,所以解得,。故所求双曲线方程为。说明求双曲线标准方程一般用待定系数法,当双曲线的焦点位置不确定时,为了避免讨论焦点的位置,一般设双曲线方程为(),这样可以简化运算。二 等轴双曲线例等轴双曲线的中心在原点,焦点在轴上,与直线交于两点、,且。求此等轴双曲线的方程。分析根据等轴双曲线的特点,可以设含有一个参数的方程(),求出即可。解设等轴双曲线方程为()。由解得交点、的坐标分别为、。因为,所以。故所求双曲线方程为。说明等轴双曲线是一类特殊的双曲线,它有一些特殊的性质
2、,比如:离心率,渐近线方程为且互相垂直等等。三 共焦点双曲线例已知过点,且与双曲线有共同焦点的双曲线的标准方程。分析根据双曲线焦点与、的关系,有共同焦点的双曲线方程可设为(16),求出即可。解 设双曲线方程为(16),将代入,得。说明与双曲线共焦点的双曲线方程可设为()。根据椭圆与双曲线的关系,与椭圆共焦点的双曲线方程可设为(),请注意它们的区别。四 共渐近线双曲线例4 求经过点,且与双曲线有共同渐近线的双曲线方程。分析因为双曲线的两条渐近线方程为双曲线,因此与它共渐近线的双曲线方程可表示为双曲线()。解设双曲线方程为(),因为双曲线经过点,所以。故所求双曲线方程为,即。说明求共渐近线的双曲线
3、方程也可以讨论焦点分别在两条坐标轴上的情况,以上解法避免了讨论过程,使解题更合理。另外,以已知双曲线的实轴为虚轴、虚轴为实轴的双曲线叫做原双曲线的共轭双曲线。显然共轭双曲线有相同的渐近线,因此求共轭双曲线方程时可以采用这个方法。五 同离心率的双曲线例5 求经过点,且与双曲线的离心率相同的双曲线的标准方程。分析 因为一条双曲线和双曲线(0,0)离心率相同,那么它的焦点可能在轴上,也可能在轴上。若焦点在轴上,它的方程可设为(0,0,);若焦点在轴上,它的方程可设为(0,0,)。解 (1)当所求双曲线的焦点在轴上时,它的方程可设为(),将代入,得。此时所求双曲线的标准方程为。()当所求双曲线的焦点在轴上时,它的方程可设为(),将代入,得(舍去)。故所求双曲线的标准方程为。说明已知同离心率与相同渐近线求双曲线方程的方法类似,请你比较它们的区别。六 已知双曲线渐近线的双曲线例求一条渐近线方程为,一个焦点是的双曲线方程。分析由,得,因此借助与共渐近线方程问题的方法,设所求双曲线方程为(),求出即可。解根据题意,可设所求双曲线方程为()。又因为焦点在轴上,所以。因为,所以16,解得。说明渐近线方程为或的双曲线方程可设为(),然后确定的值。因为求双曲线标准方程的条件是多种多样的,因此在解题时,一定要认真审题,弄清题意,根据条件选择适当的“方程形式”,解决问题。