1、若,则;若,则;若,则数列1、数列:按照一定顺序排列着的一列数2、数列的项:数列中的每一个数3、有穷数列:项数有限的数列4、无穷数列:项数无限的数列5、递增数列:从第2项起,每一项都不小于它的前一项的数列6、递减数列:从第2项起,每一项都不大于它的前一项的数列7、常数列:各项相等的数列8、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列9、数列的通项公式:表示数列的第项与序号之间的关系的公式10、数列的递推公式:表示任一项与它的前一项(或前几项)间的关系的公式11、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的
2、公差12、由三个数,组成的等差数列可以看成最简单的等差数列,则称为与的等差中项若,则称为与的等差中项13、若等差数列的首项是,公差是,则14、通项公式的变形:;15、若是等差数列,且(、),则;若是等差数列,且(、),则16、等差数列的前项和的公式:17、等差数列的前项和的性质:若项数为,则,且,若项数为,则,且,(其中,)18、如果一个数列从第项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比19、在与中间插入一个数,使,成等比数列,则称为与的等比项若,则称为与的等比中项注意:与的等比中项可能是20、若等比数列的首项是,公比是,则21、通项公式的变
3、形:22、若是等比数列,且(、),则;若是等比数列,且(、),则23、等比数列的前项和的公式:24、等比数列的前项和的性质:若项数为,则,成等比数列()不等式1、;2、不等式的性质: ;,;3、一元二次不等式:只含有一个未知数,并且未知数的最高次数是的不等式4、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式二次函数的图象一元二次方程的根有两个相异实数根 有两个相等实数根没有实数根一元二次不等式的解集若二次项系数为负,先变为正5、设、是两个正数,则称为正数、的算术平均数,称为正数、的几何平均数6、均值不等式定理: 若,则,即7、常用的基本不等式:8、极值定理:设、都为正数
4、,则有若(和为定值),则当时,积取得最大值若(积为定值),则当时,和取得最小值高中数学必修五公式第一章 三角函数一正弦定理:变形: 推论:二余弦定理:三三角形面积公式:第二章 数列一等差数列: 1.定义:an+1-an=d(常数)2.通项公式:或3.求和公式:4.重要性质:(1)(2)二等比数列: 3.求和公式: 三数列求和方法总结:1.等差等比数列求和可采用求和公式(公式法).2.非等差等比数列可考虑(分组求和法) ,(错位相减法)等转化为等差或等比数列再求和,若不能转化为等差或等比数列则采用(拆项相消法)求和.注意:(1)若数列的通项可分成两项之和(或三项之和)则可用(分组求和法)。(2)
5、若一个等差数列与一个等比数列的对应相乘构成的新数列求和,采用(错位相减法).过程:乘公比再两式错位相减(3)若数列的通项可拆成两项之差,通过正负相消后剩有限项再求和的方法为(拆项相消法).常见的拆项公式: 四.数列求通项公式方法总结:1.找规律(观察法) 2.为等差等比(公式法) 3.已知Sn,用(Sn法)即用公式4. 叠加法 5.叠乘法等第三章:一解一元二次不等式三部曲: 1.化不等式为标准式ax2+bx+c0或 ax2+bx+c0)。 3.根据图象写出不等式的解集.特别的:若二次项系数a为正且有两根时写解集用口决:(不等号)大于0取两边,小于0取中间二.分式不等式的求解通法:(1)标准化:
6、右边化零,系数化正.(2)转 换:化为一元二次不等式(依据:两数的商与积同号)三.二元一次不等式Ax+By+C0(A、B不同时为0),确定其所表示的平面区域用口诀:同上异下(注意:包含边界直线用实线,否则用虚线)四.线性规划问题求解步骤:画(可行域)移(平行线)求(交点坐标,最优解,最值)答.五.基本不等式:(当且仅当a=b时,等号成立)利用基本不等式求最值应用条件:一正数 二定值 三相等旧知识回顾:1.(1)十字相乘法:左列分解二次项系数a,右列分解常数项c,交叉相乘再相加凑成一次项系数b。2韦达定理:3对数类:logaM+logaN=logaMN logaM-logaN=loga logaMN=NlogaM(M.0,N0)8
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1