1、 解:设且, , 故函数在区间上为减函数.练习1 证明函数在区间上为减函数(定义法)练习2 证明函数在区间上为增函数(定义法、快速判断法)练习3 求函数定义域,并求函数的单调增区间(定义法)练习4 求函数定义域,并求函数的单调减区间(定义法)(二) 函数单调性的应用例1 若函数是定义在上的增函数,且恒成立,求实数的范围。练习1 若函数是定义在上的增函数,且恒成立,求实数的范围练习2 若函数是定义在上的增函数,且恒成立,求实数的范围例2 若函数是定义在上的减函数,且恒成立,求实数的取值范围.练1 若函数是定义在上的减函数,且恒成立,求实数的取值范围.例3 求函数在区间上的最大值.练习1 求函数在
2、区间上的最大值二 、奇偶性题型例1 判断下列函数的奇偶性1) 2)3) 4)解:1)的定义域为R,所以原函数为偶函数。2) 的定义域为即,关于原点对称,又即 ,所以原函数既是奇函数又是偶函数。3)的定义域为 即,定义域不关于原点对称,所以原函数既不是奇函数又不是偶函数。4)分段函数的定义域为关于原点对称,当时,当时, ,综上所述,在上总有 所以原函数为奇函数。注意:在判断分段函数的奇偶性时,要对x在各个区间上分别讨论,应注意由x的取值范围确定应用相应的函数表达式。练习 判断下列函数的奇偶性 1) 2) 3) 4) 5)例2 设是R上是奇函数,且当时,求在R上的解析式当时有,设, 则,从而有 ,
3、是R上是奇函数,所以 ,因此所求函数的解析式为在求函数的解析式时,当球自变量在不同的区间上是不同表达式时,要用分段函数是形式表示出来。练习1已知为奇函数,当时,求的表达式。例3 已知函数且,求的值令,则 为奇函数, 练习1 已知函数且,求的值例4 设函数是定义域R上的偶函数,且图像关于对称,已知时,求时的表达式。图像关于对称, = 所以时的表达式为=练习1 设函数是定义域R上的偶函数,且恒成立,已知时,求时的表达式例5 定义在R上的偶函数在区间上单调递增,且有求的取值范围。,且为偶函数,且在上单调递增,在上为减函数,所以的取值范围是练习1 定义在上的奇函数为减函数,且,求实数a的取值范围练习2
4、 定义在上的偶函数,当时,为减函数,若成立,求m的取值范围.综合练习1.判断函数的奇偶性 2.求下列函数的单调区间(1) ; (2) ; (3)3函数在上是单调递减函数,则的单调递增区间是 4.若函数在区间上是奇函数,则a=( )A.-3或1 B。 3或-1 C 1 D -3 已知函数,则它是( )A 奇函数 B 偶函数 C 即是奇函数又是偶函数 D既不是奇函数又不是偶函数5判断下列函数的奇偶性(1) (2)6.已知定义在R上的奇函数,满足,且在区间0,2上是增函数,则( ). A. B. C. D. 7.已知定义在R上的奇函数满足,则的值为()A. -1 B. 0 C. 1 D. 28.已知函数f(x)=,x1,(1)当a=时利用函数单调性的定义判断其单调性,并求其值域(2)若对任意x1,f(x)0恒成立,求实数a的取值范围