ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:619.50KB ,
资源ID:15024114      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/15024114.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(一元二次方程根的分布情况归纳(完整版)Word文档下载推荐.doc)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

一元二次方程根的分布情况归纳(完整版)Word文档下载推荐.doc

1、综合结论(不讨论)表二:(两根与的大小比较)两根都小于即两根都大于即一个根小于,一个大于即表三:(根在区间上的分布)两根都在内两根有且仅有一根在内(图象有两种情况,只画了一种)一根在内,另一根在内,或根在区间上的分布还有一种情况:两根分别在区间外,即在区间两侧,(图形分别如下)需满足的条件是 (1)时,; (2)时,对以上的根的分布表中一些特殊情况作说明:(1)两根有且仅有一根在内有以下特殊情况: 若或,则此时不成立,但对于这种情况是知道了方程有一根为或,可以求出另外一根,然后可以根据另一根在区间内,从而可以求出参数的值。如方程在区间上有一根,因为,所以,另一根为,由得即为所求; 方程有且只有

2、一根,且这个根在区间内,即,此时由可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。如方程有且一根在区间内,求的取值范围。分析:由即得出;由即得出或,当时,根,即满足题意;当时,根,故不满足题意;综上分析,得出或根的分布练习题例1、已知二次方程有一正根和一负根,求实数的取值范围。解:由 即 ,从而得即为所求的范围。例2、已知方程有两个不等正实根,求实数的取值范围。由 或即为所求的范围。例3、已知二次函数与轴有两个交点,一个大于1,一个小于1,求实数的取值范围。由 即 即为所求的范围。例4、已知二次方程只有一个正根且这个根小于1,求实数

3、的取值范围。由题意有方程在区间上只有一个正根,则 即为所求范围。(注:本题对于可能出现的特殊情况方程有且只有一根且这个根在内,由计算检验,均不复合题意,计算量稍大)例1、当关于的方程的根满足下列条件时,求实数的取值范围: (1)方程的两个根一个大于2,另一个小于2;(2)方程的一个根在区间上,另一根在区间上;(3)方程的两根都小于0; 变题:方程的两根都小于-1(4)方程的两根都在区间上;(5)方程在区间(-1,1)上有且只有一解;例2、已知方程在区间-1,1上有解,求实数m的取值范围例3、已知函数f (x)的图像与x轴的交点至少有一个在原点右侧,求实数m的取值范围检测反馈:1若二次函数在区间

4、上是增函数,则的取值范围是_2若、是关于x的方程的两个实根, 则的最小值为 3若关于的方程只有一根在内,则_ _4对于关于x的方程x2+(2m-1)x+4 -2m=0 求满足下列条件的m的取值范围:(1)有两个负根 (2) 两个根都小于-1 (3)一个根大于2,一个根小于2 (4) 两个根都在(0 ,2)内(5)一个根在(-2,0)内,另一个根在(1,3)内 (6)一个根小于2,一个根大于4(7) 在(0, 2)内 有根 (8) 一个正根,一个负根且正根绝对值较大5已知函数的图像与x轴的交点至少有一个在原点的右侧,求实数m的取值范围。2、二次函数在闭区间上的最大、最小值问题探讨设,则二次函数在

5、闭区间上的最大、最小值有如下的分布情况:即图象最大、最小值对于开口向下的情况,讨论类似。其实无论开口向上还是向下,都只有以下两种结论:(1)若,则,;(2)若,则,另外,当二次函数开口向上时,自变量的取值离开轴越远,则对应的函数值越大;反过来,当二次函数开口向下时,自变量的取值离开轴越远,则对应的函数值越小。二次函数在闭区间上的最值练习二次函数在闭区间上求最值,讨论的情况无非就是从三个方面入手:开口方向、对称轴以及闭区间,以下三个例题各代表一种情况。例1、函数在上有最大值5和最小值2,求的值。对称轴,故函数在区间上单调。(1)当时,函数在区间上是增函数,故 ;(2)当时,函数在区间上是减函数,故 例2、求函数的最小值。对称轴(1)当时,(2)当时,;(3)当时,改:1本题若修改为求函数的最大值,过程又如何?(1)当时,; (2)当时,。 2本题若修改为求函数的最值,讨论又该怎样进行? 解:(1)当时,;(2)当时, ,;(3)当时,;(4)当时, ,。例3、求函数在区间上的最小值。(1)当即时,;(2)当即时,;(3)当即时,例4、讨论函数的最小值。,这个函数是一个分段函数,由于上下两段上的对称轴分别为直线,当,时原函数的图象分别如下(1),(2),(3)因此,(1)当时,; (2)当时,; (3)当时,7

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1