1、设计截止频率为的滤波器,要经过频率变换,将基准滤波器中各元件值除以M。滤波器特征阻抗变换是通过先求出带设计滤波器阻抗与基准滤波器特征阻抗的比值K,再用K去乘基准滤波器中的所有电感元件值和用这个K去除基准滤波器中所有电容元件值来实现的。公式如下: 通过上述两步变换可以得到实际的元件值计算公式:下面以以上公式推导出待求滤波器各元件取值。表一:电感型滤波器各元件值H1C1H2C2H3基准滤波器0.61803H1.61803F2H待求滤波器1.96723nH2.06013pF6.36618nH表二:电容型滤波器各元件值C30.61803F1.61803H2F0.78690 pF5.15035nH2.5
2、4648 pF图3 电感型5阶巴特沃兹LPF图4(a) 电感型衰减特性曲线图4(b) Matlab编程得到的衰减特性图4(c) ADS仿真相频特性图4(d) Matlab得到的相频特性图5 电容型5阶巴特沃兹LPF 图6(a) 电容型衰减特性曲线图6(b) Matlab编程得到的衰减特性曲线图6(c) ADS仿真电容型LPF相频特性图6(d) Matlab得到的电容型LPF相频特性通过图4和图6使用ADS软件和Matlab仿真结果可以看出,在2.5GHz处衰减为3dB,在5GHz处衰减大于30dB,而且通过相频特性曲线可以看出两种LPF都具有很好的线性相频特性曲线。因此设计的两种五阶巴特沃兹L
3、PF都可以很好的满足设计要求。将集总参数元件转换为分布参数元件集总元件如电感和电容等,只是对有限的数值范围有效,在微波频率实现很困难,而且必须用分布元件来近似,在微波频率,元件之间的距离是不能忽略的。这里需要采用Richards变换,将集总元件变换到传输线;同时采用Kuroda恒等式,以利用传输线段来分隔滤波器元件。由于这些附加的传输线段并不影响滤波器响应,这种类似的设计称之为冗余滤波器综合。设计滤波器时可吸收这些线段的优点,以便改善滤波器的响应。1.Richards变换如果一个传输线在相反端短路而且电长度为时,那么输入的正弦信号将会被反射回输入端,而且与输入信号正好同相,阻止了任何的电流的流
4、动。这与并联谐振电路在谐振时具有无限阻抗相似。如果一个传输线在相反端开路而且电长度为时,那么输入的正弦信号将会被反射回输入端,而且与输入信号正好反向,这抵消了信号。因而在这个频率上出现一个衰减极点,这与和信号源并联的串联谐振电路在谐振时的情况类似。低于谐振频率时,并联谐振电路呈感性,而串联谐振电路呈容性。于是传输线能被用来实现微波滤波器中的电感和电容,其中假设波长小于。滤波器的截止频率一般选为,于是衰减极点发生在2处()。开路和短路传输线“短截线”的行为在图中给出。图7 短路和开路传输线短截线的等效电路Richards变换使得将集总元件的滤波器转换为用印制电路板走线作为传输线的分布参数滤波器成
5、为可能。对于短路的传输线短截线可以和电感等效,由Richards变换可以得到上式意味着一个特征阻抗为的短路传输线在的频率范围上与阻抗为的电感等效。这里对应的频率。对于,的值为无穷大。这里,频率平面被映射成一个以为界的新的压缩频率平面,对应原始频率平面上的。对于一个短路线:在的频域内。同样,可以得到电容和开路短截线之间的变换式:对于开路线:将表一、表二中基准滤波器各电容、电感用上述方法替换再乘以特征阻抗50即可得到各传输线特征阻抗,如下表所示:表三:电感型LPF转换为传输线TL1TL2TL3TL4TL5归一化阻抗0.618031/1.618032实际阻抗30.901530.90178100表四:
6、电容型LPF转换为传输线1/0.618031.618031/280.9022280.901525图8 电感型LPF传输线电路图9(a) 电感型LPF转换为传输线后衰减幅频特性图9(b) 电感型LPF转换为传输线后衰减相频特性图10 电容型LPF传输线电路图11(a) 电容型LPF转换为传输线后衰减幅频特性图11(b) 电容型LPF转换为传输线后衰减相频特性按照表三、表四中换算的传输线阻抗画成电路如图8和图10所示,所有传输线电长度均为,即45度。图9(a)、(b)分别是经过Richards变换后,使用ADS软件仿真得到的电感型LPF的衰减幅频特性曲线和相频特性曲线;图11(a)、(b)分别是电
7、容型LPF经过Richards变换后仿真的衰减幅频特性曲线和相频特性特性曲线。可以看出,经过Richards变换,在5GHz的频率范围内,并没有改变LPF的衰减幅频特性和相频特性,同时可以看出,经过Richards变换,滤波器的衰减幅频曲线变为周期性的,且以4f1为周期,即10GHz一个周期,这是由于Richards变换将原来的0频率范围变成了04f1,这使得LPF转变为窄带滤波器,但在一定的频率范围内,并不影响滤波器的性能。2.Kuroda恒等式变换使用Richards变换后得到的滤波器实现方式需要使用远端短路的串联短截线。如果不用同轴传输线这类辅助手段,要在印制电路板上实现这些短路短截线是
8、极其困难的。Kuroda恒等式允许将串联短截线变换为并联短截线,反之亦然。这是一个精确的变换,而不是一个逼近。这个变换需要引入一个被称为“单位元件(UE)”的构建模块。UE是一段在f1处长度为,归一化特征阻抗为1的传输线。 图12(a)和(b)演示了如何应用Kuroda恒等式完成串联短截线和并联短截线的互换。图12(a) 串联短截线到并联短截线图12(b) 并联短截线到串联短截线经过多次Kuroda变换,可以将所有短路线转换为开路线,电感型LPF和电容型LPF各元件特征阻抗值分别如表五、表六所示,单位为。表五:元件编号TL6TL7TL8TL9特征阻抗230.9022363.8196258.54
9、12094.7211727.36072122.3607180.90150130.90223表六:180.9022369.0982242.70527111.80328图13电感型LPF经过Kuroda变换后的电路图14(a) ADS仿真电感型LPF经过Kuroda变换后的幅频特性图14(b) Matlab仿真电感型LPF经过Kuroda变换后的幅频特性图14(c) ADS仿真电感型LPF经过Kuroda变换后的相频特性图14(d) Matlab仿真电感型LPF经过Kuroda变换后的相频特性图15 电容型LPF经过Kuroda变换后的电路图16(a) ADS仿真电容型LPF经过Kuroda变换后
10、的幅频特性图16(b) Matlab仿真电容型LPF经过Kuroda变换后的幅频特性图16(c) ADS仿真电容型LPF经过Kuroda变换后的相频特性图16(d) Matlab仿真电容型LPF经过Kuroda变换后的相频特性图13和图15分别是电感型LPF和电容型LPF的电路实现,其各元件值如表五、表六所示。可以看出,经过Kuroda变换后,只有并联的开路传输线和串联单元,不再有串联的短路传输线。图14和图16分别是使用ADS和Matlab仿真两种电路的衰减幅频特性和相频特性,可以看出,Kuroda变换前后,并没有改变衰减的幅频特性,只是由于增加了单位元件,增加了相位衰减,使得相频特性衰减更
11、大,但这并不会影响滤波器的性能,可见Richards变换和Kuroda变换能够精确的将集中参数的电容、电感元件转换为响应的分布参数的传输线,而不影响滤波器的衰减特性。使用微带线实现低通滤波器前面讨论的低通滤波器在高达几百MHz的频率上都可以很好的工作。但频率更高时,元件将显著偏离理想值,寄生开始起支配作用,而且元件值变得没有意义,电容会变成电感,反之亦然。元件间的距离变得很重要,印制电路板上的走线将引入不希望的电容和电感。本文使用印制电路板走线来产生传输线,控制它们的特性,然后将这些传输线配置成滤波器结构。显然这样产生的滤波器是基于分布参数的,而不是基于集总电感器和电容器。图17是微带线的结构,下面将传输线的特征阻抗转换为微带线的尺寸。图17 微带线结构表七、表八为微带线的尺寸,微带线尺寸是在介质基板相对介电常数为4.2,厚度为1.5mm,微带线铜箔厚度为0.02mm的条件下通过阻抗变换得到的。表七:电感型LPF微带线尺寸13456789W(mm)0.00691.90412.23820.77917.16250.35426.07441.15480.2763L(mm)9.47628.50018.44238.76497.97988.92718.04578.66248.9714表八:电容型LPF微带线尺寸0.05711.62673.79310.47958.0662
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1