1、直接进样,GC,LC及接口,加热进样,参考物进样等。(2)离子源:使被分析样品的原子或分子离化为带电粒子(离子)的装置,并对离子进行加速使其进入分析器,根据离子化方式的不同,有机常用的有如下几种,其中EI,FAB最常用。 EI(Electron Impact Ionization):电子轰击电离最经典常规的方式,其他均属软电离,EI使用面广,峰重现性好,碎片离子多。缺点:不适合极性大、热不稳定性化合物,且可测定分子量有限,一般1,000。 CI(Chemical Ionization):化学电离核心是质子转移,与EI相比,在EI法中不易产生分子离子的化合物,在CI中易形成较高丰度的M+H+或M
2、-H+等准分子离子。得到碎片少,谱图简单,但结构信息少一些。与EI法同样,样品需要汽化,对难挥发性的化合物不太适合。 原理 R + e- R+ + 2e- (电子电离)反应气为含H的 R为反应气体分子 R+ + R RH+ + (R-H) 分子,例如异丁 M为样品分子 RH+ + M R + (M+H)+ (质子转移)烷,甲烷,氨气, R浓度M浓度 R+ + M R + M+ (电荷交换)甲醇气等 R+ + M (R+M)+ (加合离子) FD(Field Desorption):场解吸大部分只有一根峰, 适用于难挥发极性化合物,例如糖,应用较困难,目前基本被FAB取代。 FAB(Fast A
3、tom Bombardment):快原子轰击利用氩,氙,80年代初发明,或者铯离子枪(LSIMS,液体二次离子质谱 ),高速中性原子或离子对溶解在基质中的样品溶液进行轰击,在产生“爆发性”汽化的同时,发生离子-分子反应,从而引发质子转移,最终实现样品离子化。适用于热不稳定以及极性化合物等。FAB法的关键之一是,选择适当的(基质)底物,从而可以进行从较低极性到高极性的范围较广的有机化合物测定,是目前应用比较广的电离技术。不但得到分子量还能提供大量碎片信息。产生的谱介于EI与ESI之间,接近硬电离技术。生成的准分子离子,一般常见M+H+ 和M+底物 +。另外:还有根据底物脱氢以及分解反应产生的M-
4、H_ 容易提供电子的芳烃化合物产生M+ 甾类化合物、氨基霉素等还产生M+NH4+ 糖甙、聚醚等一般可(产生)观察到M+Na+ 由底物与粒子轰击(碰撞)诱导发生还原反应来产生M+nH+ (n1),二量体(双分子)M+H+M+及M+H+B+等。因此,进行谱图解析时,要考虑底物和化合物的性质,盐类的混入等进行综合判断。 ESI(Electrospray Ionization):电喷雾电离与LC,毛细管电泳联用最好,亦可直接进样,属最软的电离方式,混合物直接进样可得到各组分的分子量。 APCI(Atmospheric Pressure Chemical Ionization):大气压化学电离同上,更适
5、宜做小分子。 MALDI(Matrix Assisted Laser Desorption):基体辅助激光解吸基质辅助激光解吸电离是一种用于大分子离子化方法,利用对使用的激光波长范围具有吸收并能提供质子的基质(一般常用小分子液体或结晶化合物),将样品与其混合溶解并形成混合体,在真空下用激光照射该混合体,基体吸收激光能量,并传递给样品,从而使样品解吸电离。MALDI的特点是准分子离子峰很强。通常将MALDI用于飞行时间质谱和FT-MS,特别适合分析蛋白质和DNA等大分子。(3)质量分析器:是质谱仪中将离子按质荷比分开的部分,离子通过分析器后,按不同质荷比(M/Z)分开,将相同的M/Z离子聚焦在一
6、起,组成质谱。(4)检测接收器:接收离子束流的装置,有:二次电子倍增器 光电倍增管 微通道板 (5)数据系统:将接收来的电信号放大、处理并给出分析结果。包括外围部分.例如终端显示器,打印机等。现代计算机接口,还可反过来控制质谱仪各部分工作。(6)真空系统:由机械真空泵(前极低真空泵),扩散泵或分子泵(高真空泵)组成真空机组,抽取离子源和分析器部分的真空。只有在足够高的真空下,离子才能从离子源到达接收器,真空度不够则灵敏度低。(7)供电系统:包括整个仪器各部分的电器控制部件,从几伏低压到几千伏高压。2.分类: 常见下列几种: 双聚焦扇形磁场-电场串联仪器(sector) 四极质谱仪(Q) 离子阱
7、质谱仪(TRAP) 飞行时间质谱仪(TOF)付利叶变换-离子回旋共振质谱仪(FT-ICRMS) 混合型如四极+TOF,磁式+TRAP等 串列式多级质谱仪(MS/MS) 三重四极 TOF+TOF3.分析原理: 磁质谱基本公式: M/Z=H2R2/2V M:质量 Z:电荷 V:加速电压 R:磁场半径 H:磁场强度 磁质谱经典,可高分辨,质量范围相对宽;缺点是体积大,造价高,现在越来越少。 四极分析器quadrupole 是一种被广泛使用的质谱仪分析器。由两组对称的电极组成。电极上加有直流电压和射频电压(U+Vcost)。相对的两个电极电压相同,相邻的两个电极上电压大小相等,极性相反。带电粒子射入高
8、频电场中,在场半径限定的空间内振荡。在一定的电压和频率下,只有一种质荷比的离子可以通过四极杆达到检测器,其余离子则因振幅不断增大,撞在电极上而被“过滤”掉,因此四极分析器又叫四极滤质器。利用电压或频率扫描,可以检测不同质荷比的离子。优点是扫描速度快,比磁式质谱价格便宜,体积小,常作为台式进入常规实验室,缺点是质量范围及分辨率有限。 飞行时间质谱仪:利用相同能量的带电粒子,由于质量的差异而具有不同速度的原理,不同质量的离子以不同时间通过相同的漂移距离到达接收器。 公式 M/Z=2E/v2 v=d/t 代入 M/Z=Kt2 E:离子动能 v:离子速度 d:飞行距离 t:飞行时间 K:常数=2E/d
9、2优点:扫描速度快,灵敏度高,不受质量范围限制以及结构简单,造价低廉等. FT-MS:在射频电场和正交横磁场作用下,离子作螺旋回转运动,回旋半径越转越大,当离子回旋运动的频率与补电场射频频率相等时,产生回旋共振现象,测量产生回旋共振的离子流强度,经付立叶变换计算,最后得到质谱图。是较新的技术,对于高质量数,高分辨率及多重离子分析,很有前途,但使用超导磁铁需要液氦,不能接GC,动态范围稍窄,目前还不太作为常规仪器使用。 离子阱Ion trap 通常由一个双曲面截面的环形电极和上下一对双曲面端电极构成。从离子源产生的离子进入离子阱内后,在一定的电压和频率下,所有离子均被阱集。改变射频电压,可使感兴
10、趣的离子处于不稳定状态,运动幅度增大而被抛出阱外被接收、检测。用离子阱作为质量分析器,不但可以分析离子源产生的的离子,而且可以把离子阱当成碰撞室,使阱内的离子碰撞活化解离,分析其碎片离子,得到子离子谱。离子阱不但体积很小,而且具有多级质谱的功能,即做到MSn,但动态范围窄,低质量区1/3缺失,不太适合混合物定量.多级质谱联用仪 现在,几乎所有的商品质谱仪上均配有GC-MS,但对难挥发、强极性和大分子量混合物,GC-MS无能为力,为了弥补GC-MS的不足,经过20多年的探索,通过开发上述几种软电离技术,特别是ESI和APCI等,解决了LC与离子源接口问题(1987年完成),从而实现了LC-MS联
11、用,是分析化学的一次重大进展,而串联质谱仪更具有许多优点。串联质谱仪(MS/MS或Tamdem):离子源第一分析器碰撞室第二分析室接收器 MS1 MS2 进行MS/MS的仪器从原理上可分为两类。第一类仪器利用质谱在空间中的顺序,是由两台质谱仪串联组装而成。即前面列出的串列式多级质谱仪。第二类利用了一个质谱仪时间顺序上的离子储存能力,由具有存储离子的分析器组成,如离子回旋共振仪(ICR)和离子阱质谱仪。这类仪器通过喷射出其它离子而对特定的离子进行选择。在一个选择时间段这些被选择的离子被激活,发生裂解,从而在质谱图中观测到碎片离子。这一个过程可以反复观测几代碎片的碎片。时间型质谱便于进行多级子离子
12、实验,但另一方面不能进行母离子扫描或中性丢失。一般采用ESI、CI或FAB等软离子化方法,以利于多产生分子离子,通过MS1的离子源使样品离子化后,混和离子通过第一分析器,可选择一定质量的离子作为母体离子,进入碰撞室,室内充有靶子反应气体(碰撞气体:He、Ar、 Xe、CH4等)对所选离子进行碰撞,发生离子分子碰撞反应,从而产生子离子,再经MS2的分析器及接受器得到子离子(扫描)质谱(product ion spectrun)。一般称做MS/MS-CID谱,或者简称为CID(collision-induced dissociation) 谱,碰撞诱导裂解谱,及MS/MS谱。另外,也有母找子离子的
13、MS/MS谱,(MS/MS spreursor ion spectrum)研究MS/MS谱(一般指子离子质谱,与在源内裂解产生的正常碎片质谱类似,但有区别,现不能检索),可以了解到被分析样品的混合物性质和成分,对一些混合物(目前,多用最软电离的ESI或APCI的MS/MS。不必进行色谱分离可直接分析,与色谱法相比,有很快的响应速度,省时省样品省费用,具有高灵敏度和高效率的优点。另外一个特点是通过子母及母子MS/MS谱可以掌握一定的结构信息,做为目前有力的结构解析手段。因此,现在利用串联质谱仪进行药物研究越来越得到重视,特别是在药物代谢以及混合物的微量成分分析和结构测定等方面正在起到越来越重要的
14、作用。比较常用的三级四极型MS/MS,联用LC-MS/MS使用方便,操作简单,适合于定量等常规,大型的MS/MS更适合结构解析。4.仪器性能指标(1)质量范围:表明一台仪器所允许测量的质荷比,从最小到最大值的变化范围.一般最小为2,实际10以下已经无用.最大可达数万,利用多电荷离子,实际能达上百万。(2)分辨率(R):是判断质谱仪的一个重要指标,低分辨仪器一般只能测出整数分子量.高分辨率仪器可测出分子量小数点后第四位,因此可算出分子式,不需要进行元素分析, 更精确。 R=M/M M为相邻两峰之一的质量数.M为差.例如:500与501两个峰刚好分开.则R=500/1=500.若R=50000 则可区别开500与500.01。对于四极杆仪器,通常做到单位分辨,高低质量区R数值不同.(3)灵敏度:有多种定义方法,粗略地说是表示所能检查出的最小
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1