1、逐步回归分析实例逐步回归分析在自变量很多时,其中有的因素可能对应变量的影响不是很大,而且x之间可能不完全相互独立的,可能有种种互作关系。在这种情况下可用逐步回归分析,进行x因子的筛选,这样建立的多元回归模型预测效果会更较好。逐步回归分析,首先要建立因变量y与自变量x之间的总回归方程,再对总的方程及每个自变量进行假设检验。当总的方程不显著时,表明该多元回归方程线性关系不成立;而当某个自变量对y影响不显著时,应该把它剔除,重新建立不包含该因子的多元回归方程。筛选出有显著影响的因子作为自变量,并建立“最优”回归方程。回归方程包含的自变量越多,回归平方和越大,剩余的平方和越小,剩余均方也随之较小,预测
2、值的误差也愈小,模拟的效果愈好。但是方程中的变量过多,预报工作量就会越大,其中有些相关性不显著的预报因子会影响预测的效果。因此在多元回归模型中,选择适宜的变量数目尤为重要。逐步回归在病虫预报中的应用实例:以陕西省长武地区19841995年的烟蚜传毒病情资料、相关虫情和气象资料为例(数据见DATA6.xls),建立蚜传病毒病情指数的逐步回归模型,说明逐步回归分析的具体步骤。影响蚜传病毒病情指数的虫情因子和气象因子一共有21个,通过逐步回归,从中选出对病情指数影响显著的因子,从而建立相应的模型。对19841995年的病情指数进行回检,然后对19961998年的病情进行预报,再检验预报的效果。变量说
3、明如下:y:历年病情指数 x1:前年冬季油菜越冬时的蚜量(头/株)x2:前年冬季极端气温 x3:5月份最高气温 x4:5月份最低气温 x5:35月份降水量 x6:46月份降水量 x7:35月份均温 x8:46月份均温 x9:4月份降水量 x10:4月份均温 x11:5月份均温 x12:5月份降水量 x13:6月份均温 x14:6月份降水量 x15:第一次蚜迁高峰期百株烟草有翅蚜量 x16:5月份油菜百株蚜量 x17:7月份降水量 x18:8月份降水量 x19:7月份均温 x20:8月份均温 x21:元月均温 1)准备分析数据 在SPSS数据编辑窗口中,用“FileOpenData”命令,打开“
4、DATA6.xls”数据文件。数据工作区如下图3-1显示。图3-12)启动线性回归过程单击SPSS主菜单的“Analyze”下的“Regression”中“Linear”项,将打开如图3-2所示的线性回归过程窗口。图3-2 线性回归对话窗口3) 设置分析变量设置因变量:将左边变量列表中的“y”变量,选入到“Dependent”因变量显示栏里。设置自变量:将左边变量列表中的“x1”“x21”变量,全部选移到“Independent(S)”自变量栏里。设置控制变量: 本例子中不使用控制变量,所以不选择任何变量。选择标签变量: 选择“年份”为标签变量。选择加权变量: 本例子没有加权变量,因此不作任何
5、设置。4)回归方式在“Method”分析方法框中选中“Stepwise”逐步分析方法。该方法是根据“Options”选择对话框中显著性检验(F)的设置,在方程中进入或剔除单个变量,直到所建立的方程中不再含有可加入或可剔除的变量为止。设置后的对话窗口如图3-3。图3-35)设置变量检验水平 在图6-15主对话框里单击“Options”按钮,将打开如图3-4所示的对话框。图3-4“Stepping Method Criteria”框里的设置用于逐步回归分析的选择标准。其中“Use probability of F”选项,提供设置显著性F检验的概率。如果一个变量的F检验概率小于或等于进入“Entry
6、”栏里设置的值,那么这个变量将被选入回归方程中;当回归方程中变量的F值检验概率大于剔除“Removal”栏里设置的值,则该变量将从回归方程中被剔除。由此可见,设置F检验概率时,应使进入值小于剔除值。“Ues F value” 选项,提供设置显著性F检验的分布值。如果一个变量的F值大于所设置的进入值(Entry),那么这个变量将被选入回归方程中;当回归方程中变量的F值小于设置的剔除值(Removal),则该变量将从回归方程中被剔除。同时,设置F分布值时,应该使进入值大于剔除值。本例子使用显著性F检验的概率,在进入“Entry”栏里设置为“0.15”,在剔除“Removal”栏里设置为“0.20”
7、(剔除的概率值应比进入的值大),如图6-17所示。图6-17窗口中的其它设置参照一元回归设置。6)设置输出统计量在主对话图3-2窗口中,单击“Statistics”按钮,将打开如图6-18所示的对话框。该对话框用于设置相关参数。其中各项的意义分别为:图3-5 “Statistics”对话框“Regression Coefficients”回归系数选项:“Estimates”输出回归系数和相关统计量。“Confidence interval”回归系数的95%置信区间。“Covariance matrix”回归系数的方差-协方差矩阵。本例子选择“Estimates”输出回归系数和相关统计量。“Re
8、siduals”残差选项:“Durbin-Watson”Durbin-Watson检验。 “Casewise diagnostic”输出满足选择条件的观测量的相关信息。选择该项,下面两项处于可选状态:“Outliers outside standard deviations”选择标准化残差的绝对值大于输入值的观测量; “All cases”选择所有观测量。本例子都不选。 其它输入选项“Model fit”输出相关系数、相关系数平方、调整系数、估计标准误、ANOVA表。 “R squared change”输出由于加入和剔除变量而引起的复相关系数平方的变化。 “Descriptives”输出变量
9、矩阵、标准差和相关系数单侧显著性水平矩阵。 “Part and partial correlation”相关系数和偏相关系数。 “Collinearity diagnostics”显示单个变量和共线性分析的公差。本例子选择“Model fit”项。 7)绘图选项在主对话框单击“Plots”按钮,将打开如图3-6所示的对话框窗口。该对话框用于设置要绘制的图形的参数。图中的“X”和“Y”框用于选择X轴和Y轴相应的变量。图3-6“Plots”绘图对话框窗口左上框中各项的意义分别为:“DEPENDNT”因变量。“ZPRED”标准化预测值。“ZRESID”标准化残差。“DRESID”删除残差。“ADJP
10、RED”调节预测值。“SRESID”学生氏化残差。“SDRESID”学生氏化删除残差。“Standardized Residual Plots”设置各变量的标准化残差图形输出。其中共包含两个选项:“Histogram”用直方图显示标准化残差。“Normal probability plots”比较标准化残差与正态残差的分布示意图。“Produce all partial plot”偏残差图。对每一个自变量生成其残差对因变量残差的散点图。本例子不作绘图,不选择。8) 保存分析数据的选项在主对话框里单击“Save”按钮,将打开如图3-7所示的对话框。图3-7“Save”对话框“Predicted
11、Values”预测值栏选项: Unstandardized 非标准化预测值。就会在当前数据文件中新添加一个以字符“PRE_”开头命名的变量,存放根据回 归模型拟合的预测值。 Standardized 标准化预测值。 Adjusted 调整后预测值。 S.E. of mean predictions 预测值的标准误。本例选中“Unstandardized”非标准化预测值。 “Distances”距离栏选项: Mahalanobis: 距离。 Cooks”: Cook距离。 Leverage values: 杠杆值。“Prediction Intervals”预测区间选项: Mean: 区间的中心
12、位置。 Individual: 观测量上限和下限的预测区间。在当前数据文件中新添加一个以字符“LICI_”开头命名的变量,存放 预测区间下限值;以字符“UICI_”开头命名的变量,存放预测区间上限值。 Confidence Interval:置信度。本例不选。“Save to New File”保存为新文件:选中“Coefficient statistics”项将回归系数保存到指定的文件中。本例不选。 “Export model information to XML file” 导出统计过程中的回归模型信息到指定文件。本例不选。“Residuals” 保存残差选项: “Unstandardiz
13、ed”非标准化残差。 “Standardized”标准化残差。 “Studentized”学生氏化残差。 “Deleted”删除残差。 “Studentized deleted”学生氏化删除残差。本例不选。“Influence Statistics” 统计量的影响。 “DfBeta(s)”删除一个特定的观测值所引起的回归系数的变化。 “Standardized DfBeta(s)”标准化的DfBeta值。 “DiFit” 删除一个特定的观测值所引起的预测值的变化。 “Standardized DiFit”标准化的DiFit值。 “Covariance ratio”删除一个观测值后的协方差矩隈的
14、行列式和带有全部观测值的协方差矩阵的行列式的比率。本例子不保存任何分析变量,不选择。9)提交执行在主对话框里单击“OK”,提交执行,结果将显示在输出窗口中。主要结果见表6-10至表6-13。10) 结果分析 主要结果:表6-10 是逐步回归每一步进入或剔除回归模型中的变量情况。表6-11 是逐步回归每一步的回归模型的统计量:R 是相关系数;R Square 相关系数的平方,又称判定系数,判定线性回归的拟合程度:用来说明用自变量解释因变量变异的程度(所占比例);Adjusted R Square 调整后的判定系数;Std. Error of the Estimate 估计标准误差。表6-12 是逐步回归每一步的回归模型的方差分析,F值为10.930,显著性概率是0.001,表明回归极显著。表6-13 是逐步回归每一步的回归方程系数表。分析:建立回归模型:根据多元回归模型:从6-13中看出,过程一共运行了四步,最后一步以就是表中的第4步的计算结果得知:21个变量中只进入了4个变量x15、x4、x7 和 x5。把表6-13中“非标准化回归系数”栏目中的“B”列数据代入多元回归模型得到预报方程:预测值的标准差可用剩余标准
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1