1、(2)会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题2排列与组合(1)理解排列、组合的概念(2)能利用计数原理推导排列数公式、组合数公式(3)能解决简单的实际问题3事件与概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别(2)了解两个互斥事件的概率加法公式4古典概型(1)理解古典概型及其概率计算公式(2)会计算一些随机事件所含的基本事件数及事件发生的概率5随机数与几何概型(1)了解随机数的意义,能运用模拟方法估计概率(2)了解几何概型的意义【回归课本整合】1.排列数中、组合数中.(1)排列数公式 ;。 (2)组合数公式规定,.(3)排列
2、数、组合数的性质:;.2.解排列组合问题的依据是:分类相加(每类方法都能独立地完成这件事,它是相互独立的,一次的且每次得出的是最后的结果,只需一种方法就能完成这件事),分步相乘(一步得出的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序排列,无序组合3.解排列组合问题的方法有:(1)特殊元素、特殊位置优先法(元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置)。(2)间接法(对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉)(3)相邻问题捆绑法(把相邻的
3、若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”全排列,最后再“松绑”,将特殊元素在这些位置上全排列)。(4)不相邻(相间)问题插空法(某些元素不能相邻或某些元素要在某特殊位置时可采用插空法,即先安排好没有限制元条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间)。(5)多排问题单排法。(6)多元问题分类法。(7)有序问题组合法。(8)选取问题先选后排法。(9)至多至少问题间接法。(10)相同元素分组可采用隔板法。4、分组问题:要注意区分是平均分组还是非平均分组,平均分成n组问题别忘除以n!【方法技巧提炼】1.求排列应用题的主要方法:(1)对无限制条件的问题直接法;(2)
4、对有限制条件的问题,对于不同题型可采取直接法或间接法,具体如下:每个元素都有附加条件列表法或树图法;有特殊元素或特殊位置优先排列法;有相邻元素(相邻排列)捆绑法;有不相邻元素(间隔排列)插空法;2.组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取(2)“至少”或“最多”含有几个元素的题型:解这类题必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解用直接法和间接法都可以求解通常用直接法分类复杂时,考虑逆向思维,用间接法处理3.解排列、组合的综合应用问题,要按
5、照“先选后排”的原则进行,即一般是先将符合要求的元素取出(组合),再对取出的元素进行排列,常用的分析方法有:元素分析法、位置分析法、图形分析法要根据实际问题探索分类、分步的技巧,做到层次清楚,条理分明【考场经验分享】1切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行分类时要做到不重不漏对于复杂的计数问题,可以分类、分步综合应用2解决排列、组合问题可遵循“先组合后排列”的原则,区分排列、组合问题主要是判断“有序”和“无序”,更重要的是弄清怎样的算法有序,怎样的算法无序,关键是在计算中体现“有序”和“无序”3要能够写出所有符合条件的排列或组合,尽可能使写出的排列或组合与计算的排列数相符
6、,使复杂问题简单化,这样既可以加深对问题的理解,检验算法的正确与否,又可以对排列数或组合数较小的问题的解决起到事半功倍的效果4.如果题设条件比较复杂,且备选答案数字较小,可考虑利用穷举法求解;如果试题难度较大并和其它知识联系到一起,感觉不易求解,一般不要花费过多的时间,可通过排除法模糊确定,一般可考虑去掉数字最大和最小的答案.【新题预测演练】排列组合部分(理)1.【安徽省皖南八校2013届高三第二次联考】“2012”含有数字0,1,2,且有两个数字2,则含有数字0,1,2,且有两个相同数字2或1的四位数的个数为( )A.18 B 24 C. 27 D. 36【答案】A【解析】由题意可知:有两个
7、2或两个1的四位数共有:个2.【广西百所高中2013届高三年级第三届联考】从5位男生,4位女生中选派4位代表参加一项活动,其中至少有两位男生,且至少有1位女生的选法共有( ) A80种 B100种 C120种 D240种【答案】B【解析】.3.【北京市顺义区2013届高三第一次统练】从0,1中选一个数字,从2,4,6中选两个数字,组成无重复数字的三位数,其中偶数的个数为A.36 B.30 C.24 D.12【答案】C【解析】若选1,则有种。若选0,则有种,所以共有,选C.4.【2013届河北省重点中学联合考试】.甲、乙、丙等五人站成一排,要求甲、乙均不与丙相邻,则不同的排法种数为 (A)72种
8、(B52种(C)36种(D)24种5.【河南省中原名校2013届高三第三次联考】用0,1,2,3,4排成无重复数字的五位数,要求偶数字相邻,奇数字也相邻,则这样的五位数的个数是( ) A36 B32 C24 D20【答案】D【解析】相邻问题用捆绑法,用所有数的个数减去首位是0的数的个数,即6.【河南省中原名校2013届高三第三次联考】用0,1,2,3,4排成无重复数字的五位数,要求偶数字相邻,奇数字也相邻,则这样的五位数的个数是( )7.【武汉市部分学校2013届高三12月联考】在实验室进行的一项物理实验中,要先后实施个程序,其中程序只能出现在第一或最后一步, 程序和在实施时必须相邻,则实验顺
9、序的编排方法共有( )A 种 B种 C种 D种【解析】B和C捆在一起,和除A以外的3个数字排列,B和C排列,A排在第一或最后,2种,所以8.【武汉市部分学校2013届高三12月联考】在实验室进行的一项物理实验中,要先后实施个程序,其中程序只能出现在第一或最后一步, 程序和在实施时必须相邻,则实验顺序的编排方法共有( )9.【2013届高三年级第二次四校联考】从2,4中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A6 B12 C18 D2411.【2013届高三年级第二次四校联考】从2,4中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中
10、奇数的个数为( )【解析】在2,4中选一个数字,从1,3,5中选两个数字,个位数字是奇数,百位和十位排列为,所以12.【石室中学高2013级“一诊模拟”】反复抛掷一枚质地均匀的骰子,每一次抛掷后都记录下朝上一面的点数,当记录有三个不同点数时即停止抛掷,则抛掷五次后恰好停止抛掷的不同记录结果总数是( )(A)种 (B)种 (C)种 (D)种【解析】先排前4次,分2类:一类是有2个数重复;一类是有1个数重复。13.【内江市2013届高中三年级第一次模拟考试试题】某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为A、16 B、18 C、2
11、4 D、32【解析】先排3辆需要停的车,排完后有4个空,把4个剩车位捆在一起,选一个空放,所以14.【山西省忻州实验中学2013届高三第一次月考摸底】在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一或最后一步,程序B和C在实施时必须相邻,问实验顺序的编排方法共有【 】 A34种 B48种 C96种 D144种15.【北京市昌平区2013届高三上学期期末理】在高三(1)班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生.如果2位男生不能连续出场,且女生甲不能排在第一个,那么出场顺序的排法种数为A. 24 B. 36 C. 48 D.6016.【四川省成都市20
12、13届高中毕业班第一次诊断性检测】 为继续实施区域发展总体战略,加大对革命老区、民族地区、边疆地区、贫困地区扶持 力度,某市教育局再次号召本市重点中学教师和领导自愿到观阁、广兴、天池、龙滩四个边远 山区中学支教,得到了积极响应,统计得知各边区学校教师需求情况如下表:边区学校教师需求情况观阁中学3名(其中需1名数学教师)广兴中学2名天池中学3名(其中需2名英语教师)龙滩中学3名(均为物理教师)现从大量报名者中选出语文教师2名(包含1名干部),数学教师3名,英语教师3名 (包含2名干部)、物理教师3名(包含1名干部),要求向每个学校各派一名干部任组长.则 不同派遣方案的种数有(A)24 种 (B)28 种 (C)36 种 (D)48 种17.【北京市朝阳区2013届高三上学期期末理】某中学从4名男生和3名女生中推荐4人参加社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有 A 140种 B 120种 C 35种 D 34种【解析】若选1男3女有种;若选2男2女有种;若选3男1女有种;所以共有种不同的选法。选D.18.【河南省中原名校2013届高三第三次联考】用0
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1