ImageVerifierCode 换一换
格式:DOCX , 页数:73 ,大小:427.98KB ,
资源ID:14672597      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/14672597.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(500kV输电线路防雷影响因素及防雷措施研究与探讨Word文件下载.docx)为本站会员(b****1)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

500kV输电线路防雷影响因素及防雷措施研究与探讨Word文件下载.docx

1、2.2 计算方法 102.3 小结 16第3章 自渝500kV输电线路的防雷性能研究 173.1 计算参数 173.2 自渝线路基本参数 183.3 规程法 233.4 EGM计算绕击性能 243.5 行波法计算反击性能 253.6 小结 26第4章 自渝500kV输电线路雷击跳闸率的影响因素 274.1 引言 274.2 影响输电线路绕击跳闸率的因素 274.3 影响输电线路反击跳闸率的因素 314.4 自渝线路高杆塔的计算 354.5 线路的防雷改进措施 364.6小结 37第5章 输电线路防雷性能模拟试验 385.1 引言 385.2 自渝线路雷击模拟试验的准备 385.3 试验数据记录

2、及分析 425.4 小结 44第6章 结论 45参考文献 48内 容 摘 要论文以自渝500kV输电线路为例,对线路的耐雷性能、防雷计算方法、耐雷性能的影响因素以及如何提高线路防雷性能的措施等进行了深入系统地研究。在对现有研究成果进行了充分了解的基础上,合理考虑了输电线路走廊的地形、线路的架设情况,建立了输电线路反击计算的杆塔模型杆塔的行波计算模型。该模型考虑了雷电波在线路中的波过程及杆塔中波的折反射、考虑了杆塔塔型对防雷计算的影响、考虑了感应过电压和工频电压对线路防雷性能的影响,编制了用行波法计算线路防雷性能的程序;论文采用能得到实时电压波形及杆塔各点电压的行波法计算输电线路的雷击跳闸率和耐

3、雷水平,可得到耐雷水平、反击跳闸率、杆塔节点电压波形等结果。在绕击性能的计算中,在目前国内外对输电线路雷电屏蔽研究状况的基础上,采用改进电气几何模型法计算绕击率,并对自渝线路的绕击性能进行了系统地计算,指出线路的易击“段”、易击杆塔,并提出相应的改进措施,为自渝线的防雷工作提供理论依据。计算结果及分析表明本文计算模型比规程法更符合实际。根据行波法、击距法的计算结果,对影响输电线路雷击跳闸率的各种因素进行了分析。建立了自渝线路的代表杆塔的模拟试验模型(原型按比例缩小100:1),进行了杆塔绕击率的模拟试验,对自渝线路的绕击性能的计算结果进行了验证。关键词:输电线路,反击,绕击,雷击跳闸率,防雷措

4、施ABSTRACTAim at 500kV Zi-Yu transmission line, systematic researching include lightning proof performance, lightning proof calculating methods and measures how to enhance proof lightning performance. On the base of knowing research in existence, this paper takes landform of transmission line aisle a

5、nd spanning instance into account with reason, establishes tower model of direct stroke on transmission line. The model considers wave process on transmission line and refraction and echo on tower crosspiece of lightning electric wave, consider the influence of tower style, consider inducting over v

6、oltage and normal frequency voltage. In this paper programme has been worked out to calculating lightning proof performance of transmission line. Aim at the actuality of Zi-Yu line, this paper takes Traveling Wave Method in which we can gain the real-time waveform of voltage and each node voltage of

7、 tower to calculate lightning striking tripping out and endurance lightning level. In shielding performance calculating, on the base of study status on lightning shielding in transmission line, this paper adopts Electric Geometry Model method to count ratio of shielding failure. By the numbers calcu

8、late Zi-Yu line shielding performance, and point to segment of lightning easy to been striken along the line and tower easy to been stricken, corresponding put forward ameliorating measure, provide the frame of reference about Zi-Yu line lightning proof work. The results and analyses indicate that t

9、he results of counting model in letterpress are more accord with practicality than the results of R-M. Then author basing the results of TW-M and EGM analyses many factors which affect lightning tripping outage of transmission line. Finally author establishes simulation test model (antetype reduced

10、pro rata of 100:1) of representative tower in Zi-Yu line for validating the results of shielding performance of Zi-Yu line, and carry out simulation test of shielding failure rate of tower. Key words: Transmission Line, Return Stroke, Shielding Failure, Lightning Tripping Probability, Lightning Proo

11、f Measure 第1章 绪 论1.1 课题意义 电力工业是国民经济的重要部门之一,它既为现代工业、现代农业、现代科学技术和现代国防提供必不可少的动力,又和广大人民群众的日常生活有着密切的关系。国民经济要高速发展,电力工业必须先行。架空输电线路是电力工业“发,输,变”三大主要组成部分之一。架空输电线路地处旷野,纵横交错,绵延数千里,而自然界天气千变万化,时不时会出现划破长空的耀目闪电和令人震耳欲聋的雷鸣,使得输电线路很容易遭受雷击,引起停电事故,给国民经济和人民生活带来严重的损失。因此,研究输电线路的防雷性能是非常必要的,并且能在理论上对实际运行起一定的指导作用。中国大部分能源资源分布在西部

12、地区,而东部沿海地区经济发达,电力负荷增长迅速,实行“西电东送”是国家的一项长期战略。西部大开发战略的实施,加大了“西电东送”的力度,使东西部间的联系更加紧密,全国联网的进程必然加快。川渝与西北联网工程是“西电东送”的七大工程之一。而西部地区十分复杂的地形、地貌以及多变的大气环境严重威胁着输电线路的安全运行。重庆的直辖,促进了经济的繁荣,但这种繁荣的稳定和持续必须要求高质量的电能来保证。二滩电站的建设,通过“自渝”线为重庆提供了强大的电力,如图1.1所示。重庆地区的地形、地貌复杂,输电线路途经的地形高差变化大、气候条件也十分恶劣,因此线路遭雷击的现象将十分突出;同时,由于雷电过电压波还会沿着线

13、路侵入发电厂和变电所,发电厂和变电站的电气设备也受到严重威胁。因此,如何保证输电线路在雷害事故频繁发生的地区的安全运行将是西部大开发中电力建设迫切需要解决的课题,它具有重要的学术意义和实际应用价值。1.2 500kV超高压线路运行状况1.2.1 国外运行状况到目前为止,雷击仍然是输电线路的主要危害。例如:瑞典1986年由于雷击而引起的事故占所有事故的51%1,日本50%以上的电力系统事故是由于雷击输电线路引起的23;国际大电网会议公布的美国、前苏联等12个国家的电压为275500 k V、总长为3.27万km输电线路连续3年运行资料中指出,雷害事故占总事故的60%1;此外,美国、澳大利亚等国的

14、同塔双回线路的雷击故障中,双回同时跳闸的故障也占较大的比例4。此外,IEEE于1970年在分析研究各国典型双回线路的雷击故障的文章中作出如下评论:观察到的线路运行统计数据,表明由雷击引起的双回路同时故障的比例比预期的大很多。图1.1 川渝500kV电网连接示意图Figure 1.1 Sketch Map of Chuan-yu 500kV Electric Net Connection目前,国外美、欧、日等500kV超高压线路普遍采用同杆双回输电。导线排列排列方式一般为逆相序。日本曾采用不平衡绝缘,但总体效果差,后来一般多采用平衡绝缘。并认为采用多相重合闸,双回雷击跳闸并不会对系统造成大的威胁

15、。采用负角保护以防绕击,美国各超高压线路保护角大小相差较大,一般同杆双回线路的保护角远远小于单回线路。苏联超高压和特高压线路的保护角较大,在20以上35。俄罗斯自19851994年共10年所积累的雷电跳闸故障的资料3表明:线路跳闸主要原因不是雷击杆塔时的反击,而是绕击造成的67。下表为日本双回雷害事故实况记录3。表1.1 日本500kV双回线路雷害事故实况记录绝缘方式事 故 情 况平衡绝缘一相事故上、中相事故率下相事故率不明事故57.6%23.7%19.0%不平衡绝缘67.3%20.0%12.7%具体分析结果:在一般地区,采用平衡绝缘的双回线路雷击跳闸率仅为0.63次/(100kma),其中双回同时跳闸率占总的跳闸率的0.63%;而在山区雷击跳闸率显著增加到3.19次/(100kma),且双回同时跳闸占43%,为改善同塔双回路的防雷性能,曾采用不平衡绝缘的措施,企图在雷击时牺牲一回,保住一回,但是效果不佳。双回线路总雷击跳闸率有些增加,一般地区的雷击跳闸率为1.91次/100km

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1