ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:717.25KB ,
资源ID:14643311      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/14643311.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(初二三角形压轴题分类解析Word格式.doc)为本站会员(b****2)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

初二三角形压轴题分类解析Word格式.doc

1、(3)若将图a中的ABC绕点C旋转一定的角度,请你画出一个变换后的图形c(草图即可),(1)中的结论还成立吗?作出判断不必说明理由. 图c3. 如图9,若和为等边三角形,分别为的中点,易证:,是等边三角形 (1)当把绕点旋转到图10的位置时,是否仍然成立?若成立,请证明;若不成立,请说明理由;图9 图10 图11(2)当绕点旋转到图11的位置时,是否还是等边三角形?若是,请给出证明,若不是,请说明理由 已知,如图所示,在和中,且点在一条直线上,连接分别为的中点(1)求证:;NM图图(2)在图的基础上,将绕点按顺时针方向旋转,其他条件不变,得到图所示的图形请直接写出(1)中的两个结论是否仍然成立

2、. FGH4. 如图,四边形ABCD和四边形AEFG均为正方形,连接BG与DE相交于点H(1)证明:ABG ADE ;(2)试猜想BHD的度数,并说明理由;(3)将图中正方形ABCD绕点A逆时针旋转(0BAE 180),设ABE的面积为,ADG的面积为,判断与的大小关系,并给予证明5.已知:如图,是等边三角形,过边上的点作,交于点,在的延长线上取点,使,连接;(2)过点作,交于点,请你连接,并判断是怎样的三角形,试证明你的结论二、 垂直模型(该模型在基础题和综合题中均为重点考察内容)考点1:利用垂直证明角相等1. 如图,ABC中,ACB90,ACBC,AE是BC边上的中线,过C作CFAE,垂足

3、为F,过B作BDBC交CF的延长线于D求证:(1)AECD; (2)若AC12 cm,求BD的长 2. (西安中考)如图(1), 已知ABC中, BAC=900, AB=AC, AE是过A的一条直线, 且B、C在A、E的异侧, BDAE于D, CEAE于E 。 图(1) 图(2) 图(3)(1)试说明: BD=DE+CE.(2) 若直线AE绕A点旋转到图(2)位置时(BD 写出结论,可不说明理由。3. 直线CD经过的顶点C,CA=CBE、F分别是直线CD上两点,且(1)若直线CD经过的内部,且E、F在射线CD上,请解决下面两个问题:如图1,若,则 (填“”,“”或“”号);如图2,若,若使中的

4、结论仍然成立,则 与 应满足的关系是 ;(2)如图3,若直线CD经过的外部,请探究EF、与BE、AF三条线段的数量关系,并给予证明图1图2图3考点2:利用角相等证明垂直1. 已知BE,CF是ABC的高,且BP=AC,CQ=AB,试确定AP与AQ的数量关系和位置关系2. 如图,在等腰RtABC中,ACB=90,D为BC的中点,DEAB,垂足为E,过点B作BFAC交DE的延长线于点F,连接CFCD=BF;(2)求证:ADCF;(3)连接AF,试判断ACF的形状.图9拓展巩固:如图9所示,ABC是等腰直角三角形,ACB90,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:A

5、DCBDE3. 如图1,已知正方形的边在正方形的边上,连接,.(1)试猜想与有怎样的位置关系,并证明你的结论;(2)将正方形绕点按顺时针方向旋转,使点落在边上,如图2,连接和.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.4.如图1,的边BC在直线上,且的边也在直线 上,边与边重合,且(1) 在图1中,请你通过观察、测量,猜想并写出与所满足的数量关系和位置关系;(2) 将沿直线向左平移到图2的位置时,交于点,连接.猜想并写出与所满足的数量关系和位置关系,请证明你的猜想;(3)将沿直线向左平移到图3的位置时,的延长线交的延长Pl(3)Q线于点Q,连结,你认为(2)中所猜

6、想的与的数量关系和位置关系和位置关系还成立吗?若不成立,请说明理由. (1)(F)(E)(2)三、 等腰三角形(中考重难点之一)等腰三角形性质的应用1. 如图,中,是中点,与交于,与 交于求证:,2. 两个全等的含,角的三角板和三角板,如图所示放置,三点在一条直线上,连结,取的中点,连结试判断的形状,并说明理由压轴题拓展:(三线合一性质的应用)已知中,为边的中点,绕点旋转,它的两边分别交、(或它们的延长线)于、当绕点旋转到于时(如图1),易证当绕点旋转到和不垂直时,在图2和图3这两种情况下,上述结论是否成立? 若成立,请给予证明;若不成立,又有怎样的数量关系?请写出你的猜想,不需证明3. 已知

7、:如图,ABC中,ABC=45,CDAB于D,BE平分ABC,且BEAC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G。(1) BF=AC (2) CE=BF (3)CE与BC的大小关系如何。等腰直角三角形(45度的联想)1. 如图1,四边形ABCD是正方形,M是AB延长线上一点。直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与CBM的平分线BF相交于点F. 如图141,当点E在AB边的中点位置时: 通过测量DE,EF的长度,猜想DE与EF满足的数量关系是 ; 连接点E与AD边的中点N,猜想NE与BF满足的数量关系是 ; 请

8、证明你的上述两猜想. 如图142,当点E在AB边上的任意位置时,请你在AD边上找到一点N, 使得NE=BF,进而猜想此时DE与EF有怎样的数量关系并证明2. 在RtABC中,ACBC,ACB90,D是AC的中点,DGAC交AB于点G.(1)如图1,E为线段DC上任意一点,点F在线段DG上,且DE=DF,连结EF与 CF,过点F作FHFC,交直线AB于点H求证:DG=DC判断FH与FC的数量关系并加以证明(2)若E为线段DC的延长线上任意一点,点F在射线DG上,(1)中的其他条件不变,借助图2画出图形。在你所画图形中找出一对全等三角形,并判断你在(1)中得出的结论是否发生改变(本小题直接写出结论

9、,不必证明)(期末考试原题哦) 已知:ABC为等边三角形,M是BC延长线上一点,直角三角尺的一条直角边经过点A,且60角的顶点E在BC上滑动,(点E不与点B、C重合),斜边与ACM的平分线CF交于点F(1)如图(1)当点E在BC边得中点位置时 猜想AE与EF满足的数量关系是 . 连结点E与边得中点,猜想和满足的数量关系是.请证明你的上述猜想;()如图()当点在边得任意位置时,和EF有怎样的数量关系,并说明你的理由?四、 角平分线问题1. 如图:E在线段CD上,EA、EB分别平分DAB和CBA, AEB=90,设AD, BC,且满足(1)求AD和BC的长;(2)你认为AD和BC还有什么关系?并验

10、证你的结论;(3)你能求出AB的长度吗?若能,请写出推理过程;若不能,请说明理由.2. 如图,OP是MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。请你参考这个作全等三角形的方法,解答下列问题:(1)如图,在ABC中,ACB是直角,B=60,AD、CE分别是BAC、BCA的平分线,AD、CE相交于点F。请你判断并写出FE与FD之间的数量关系;(第23题图)图(2)如图,在ABC中,如果ACB不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。3.(北京市中考模拟题)如图,在四边形中,平分,过作,并且,则等于多少?4. 如图,ABC中,AD平分BAC,DGBC且平分BC,DEAB于E,DFAC于F. (1)说明BE=CF的理由;(2)如果AB=,AC=,求AE、BE的长.五、中点问题1. 在ABC中, 为的中点, 过点的直线交于, 交的平行线于点。, 并交于点. 连结.(1)求证: ;(2)请猜想与的大小关系, 并加以证明2. 如右下图,在中,若,为边的中点求证:3. 已知中,为的延长线,且,为的边上的中线求证(提示:倍长中线试试)附加思考题: 以的两边、为腰分别向外作等腰和等腰,.连接,、分别是、的中点探究:与的位置关系及数量关系

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1