1、2的两部分?若存在,求出点P的坐标;若不存在,说明理由。3. 已知:m,n是方程x26x+5=0的两个实数根,且mn,抛物线y=x2+bx+c的图像经过点A(m,0),B(0,n),如图所示(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C,D的坐标和BCD的面积;(3)P是线段OC上的一点,过点P作PHx轴,与抛物线交于H点,若直线BC把PCH分成面积之比为2:3的两部分,请求出P点的坐标xCOyABD1类型二:面积问题4. 如图,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)
2、求CAB的铅垂高CD及SCAB ;(3)设点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使SPABSCAB,若存在,求出P点的坐标;若不存在,请说明理由.5. 将直角边长为6的等腰RtAOC放在如图所示的平面直角坐标系中,点O为坐标原点,点C、A分别在x、y轴的正半轴上,一条抛物线经过点A、C及点B(3,0) (1)求该抛物线的解析式; (2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当APE的面积最大时,求点P的坐标; (3)在第一象限内的该抛物线上是否存在点G,使AGC的面积与(2)中APE的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理
3、由6. 如图,在平面直角坐标系中,等腰直角AOB的斜边OB在x轴上,顶点A的坐标为(3,3),AD为斜边上的高抛物线yax 22x与直线yx交于点O、C,点C的横坐标为6点P在x轴的正半轴上,过点P作PEy轴,交射线OA于点E设点P的横坐标为m,以A、B、D、E为顶点的四边形的面积为S(1)求OA所在直线的解析式及a的值(2)当m3时,求S与m的函数关系式图EPQMNR图(3)如图,设直线PE交射线OC于点R,交抛物线于点Q以RQ为一边,在RQ的右侧作矩形RQMN,其中RN直接写出矩形RQMN与AOB重叠部分为轴对称图形时m的取值范围类型三:等腰三角形7. 如图,抛物线yax2bxc经过A(1
4、,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使MAC为等腰三角形,若存在,求出所有符合条件的点M的坐标; 备用图8. 如图(1),在平面直角坐标系中,点A的坐标为(1,-2),点B的坐标为(3,-1),二次函数的图象为. (1)平移抛物线,使平移后的抛物线过点A,但不过点B,写出平移后的抛物线的一个解析式(任写一个即可).(2)平移抛物线,使平移后的抛物线过A、B两点,记抛物线为,如图(2),求抛物线的函数解析式及顶点C的坐标.(3)设P为y轴上
5、一点,且,求点P的坐标.(4)请在图(2)上用尺规作图的方式探究抛物线上是否存在点Q,使为等腰三角形. 若存在,请判断点Q共有几个可能的位置(保留作图痕迹);o图(1)图(2)l1l2 类型四:直角三角形9. 如图,抛物线y=ax2+bx+c经过点A(-3,0),B(1.0),C(0,-3)(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DEx轴于点E,在y轴上是否存在点M,使得ADM是直角三角形?若存在,请求出点M的坐标; 备用图10. 如图1,抛物线yx 22xk与x轴交于A、B两点,与y轴交于
6、点C(0,3)(图2、图3为解答备用图)(1)k_,点A的坐标为_,点B的坐标为_;(2)设抛物线yx 22xk的顶点为M,求四边形ABMC的面积;(3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由;图3图2(4)在抛物线yx 22xk上求点Q,使BCQ是以BC为直角边的直角三角形图111. 如图所示,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C(0,2),连接AC,若tanOAC=2(1)求抛物线对应的二次函数的解析式;(2)在抛物线的对称轴l上是否存在点P,使APC=90?(3)如图所示,连接BC,M是线段B
7、C上(不与B、C重合)的一个动点,过点M作直线ll,交抛物线于点N,连接CN、BN,设点M的横坐标为t当t为何值时,BCN的面积最大?最大面积为多少? 12. 在平面直角坐标系中,现将一块等腰直角三角板放在第一象限,斜靠在两坐标轴上,且点A(0,2),点C(1,0),如图所示,抛物线y=ax2-ax-2经过点B(2)在抛物线上是否还存在点P(点B除外),使ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;类型五:相似三角形13. 如图,已知抛物线经过A(2,0),B(3,3)及原点O,顶点为C(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平
8、行四边形,求点D的坐标;(3)P是抛物线上的第一象限内的动点,过点P作PMx轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形BOC相似?14. 已知:在平面直角坐标系中,抛物线yax 2x3(a0)交x轴于A、B两点,交y轴于点C,且对称轴为直线x2(1)求该抛物线的解析式及顶点D的坐标;(2)若点P(0,t)是y轴上的一个动点,请进行如下探究:探究一:如图1,设PAD的面积为S,令WtS,当0t4时,W是否有最大值?如果有,求出W的最大值和此时t的值;如果没有,说明理由;探究二:如图2,是否存在以P、A、D为顶点的三角形与RtAOC相似?如果存在,求点P的坐标;如果不存在,请说明理
9、由15. 河南省2017年T23.(11分)如图,直线与x轴交于点A(3,0),与y轴交于点B,抛物线经过点A,B(1)求点B的坐标和抛物线的解析式; (2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N点M在线段OA上运动,若以B,P,N为顶点的三角形与APM相似,求点M的坐标;点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”请直接写出使得M,P,N三点成为“共谐点”的m的值16. 河南省2016年T23.(11分)如图1,直线y=-x+n交x轴于点A,交y轴于点C(0,4)抛物
10、线y=x2+bx+c经过点A,交y轴于点B(0,-2).点P为抛物线上的一个动点,过点P作x轴的垂线PD,过点B作BDPD于点D,连接PB.(1)求抛物线的解析式.(2)当BDP为等腰直角三角形时,求线段PD的长.(3)如图2,将BDP绕点B逆时针旋转,得到BD/P/,且PBP/=OAC,当点P的对应点P/落在坐标轴上时,请直接写出P点的坐标.类型六:线段和差与最值 17. 如图,已知抛物线yax 2bxc与y轴交于点A(0,3),与x轴分别交于B(1,0)、C(5,0)两点(1)求此抛物线的解析式;(2)若点D为线段OA的一个三等分点,求直线DC的解析式;(3)若一个动点P自OA的中点M出发
11、,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长18. 河南省2015年T23.(11分)如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A、C间的一个动点(含端点),过点P作PFBC于点F. 点D、E的坐标分别为(0,6),(-4,0),连接PD,PE,DE. (1)请直接写出抛物线的解析式;(2)小明探究点P的位置发现:当点P与点A或点C重合时,PD与PF的差为定值. 进而猜想:对于任意一点P,PD与PF的差为定值. 请你判断该猜想是否正确,并说明理由;(3)小明进一步探究得出结论:若将“使PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使PDE的周长最小的点P也是一个“好点”. 请直接写出所有“好点”的个数,并求出PDE的周长最小时“好点”
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1