1、等腰三角形不等边三角形底边和腰不相等的等腰三角形等边三角形 三角形的分类: (1)按边分类:直角三象形斜三角形锐角三角形钝角三角形 (2)按角分类: 三角形的主要线段的定义:(1)三角形的中线三角形中,连结一个顶点和它对边中点的线段表示法:1.AD是ABC的BC上的中线.2.BD=DC=BC.三角形的中线是线段;三角形三条中线全在三角形的内部;三角形三条中线交于三角形内部一点;中线把三角形分成两个面积相等的三角形(2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段1.AD是ABC的BAC的平分线.2.1=2=BAC.三角形的角平分线是线段;三角形三条角平分线全
2、在三角形的内部;三角形三条角平分线交于三角形内部一点;用量角器画三角形的角平分线(3)三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段1.AD是ABC的BC上的高线.2.ADBC于D.3.ADB=ADC=90.三角形的高是线段;锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;三角形三条高所在直线交于一点4. 在画三角形的三条角平分线,三条中线,三条高时应注意: (1)如图3,三角形三条角平分线交于一点,交点都在三角形内部. (2)如图4,三角形的三条中线交点一点,交点都在三角形内部.图4图3如图5,6,7,三角形的三条高交于一点,
3、锐角三角形的三条高的交点在三角形内部,钝角三角形的三条高的交点在三角形的外部,直角三角形的三条高的交点在直角三角形直角顶上.图5图6图75.三角形的三边关系 三角形的任意两边之和大于第三边;任意两边之差小于第三边.(1)三边关系的依据是:两点之间线段是短;(2)围成三角形的条件是任意两边之和大于第三边6. 三角形的角与角之间的关系:(1)三角形三个内角的和等于180;(2)三角形的一个外角等于和它不相邻的两个内角的和;(3)三角形的一个外角大于任何一个和它不相邻的内角.(4)直角三角形的两个锐角互余.三角形的内角和定理定理:三角形的内角和等于180推论:直角三角形的两个锐角互余。三角形的外角的
4、定义三角形一边与另一边的延长线组成的角,叫做三角形的外角.每个顶点处都有两个外角,但这两个外角是对顶角. 所以说一个三角形有六个外角,但我们每个顶点处只选一个外角,这样三角形的外角就只有三个了.三角形外角的性质(1)三角形的外角和等于360(三个外角的和)。(2)三角形的一个外角等于它不相邻的两个内角之和(3)三角形的一个角大于与它不相邻的任何一个内角7三角形的稳定性:三角形的三边长确定,则三角形的形状就唯一确定,这叫做三角形的稳定性(1)三角形具有稳定性;图8(2)四边形没有稳定性.适当添加辅助线,寻找基本图形(1)基本图形一,如图8,在DABC中,AB=AC,B,A,D成一条直线,则DAC
5、=2B=2C或B=C=DAC.图9(2)基本图形二,如图9,如果CO是AOB的角平分线,DEOB交OA,OC于D,E,那么DDOE是等腰三角形,DO=DE.当几何问题的条件和结论中,或在推理过程中出现有角平分线,平行线,等腰三角形三个条件中的两个时,就应找出这个基本图形,并立即推证出第三个作为结论.即:角平分线+平行线等腰三角形.基本图形三,如图10,如果BD是ABC的角平分线,M是AB上一点,MNBD,且与BP,BC相交于P,N.那么BM=BN,即DBMN是等腰三角形,且MP=NP,即:角平分线+垂线等腰三角形.当几何证题中出现角平分线和向角平分线所作垂线时,就应找出这个基本图形,如等腰三角
6、形不完整就应将基本图形补完整,如图11,图12. 图118.三角形知识扩充:1直角三角形中各元素间的关系:如图,在ABC中,C90,ABc,ACb,BCa。(1)三边之间的关系:a2b2c2。(勾股定理)(2)锐角之间的关系:AB90;(3)边角之间的关系:(锐角三角函数定义)sinAcosB,cosAsinB,tanA。2斜三角形中各元素间的关系:如图6-29,在ABC中,A、B、C为其内角,a、b、c分别表示A、B、C的对边。(1)三角形内角和:ABC。(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。(R为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减
7、去这两边与它们夹角的余弦的积的两倍a2b2c22bccosA;b2c2a22cacosB;c2a2b22abcosC。9三角形的面积公式:(1)Sahabhbchc(ha、hb、hc分别表示a、b、c上的高);(2)SabsinCbcsinAacsinB;(3)S;(海伦公式)(4)S;公式(4)可由公式(2)通过正玄定理 和 公式“ Sin(B+C)=SinA ”推出,学生可以自己推导。 公式(1)和(2)学生必须掌握,公式(3)和(4)建议掌握。10.特殊三角形的性质和判定:一、等腰三角形1. 有两条边相等的三角形叫做等腰三角形;三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三
8、角形。 2. 等腰三角形的性质: (1)等腰三角形的两个底角相等; (2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。 3. 等腰三角形的判定: 如果一个三角形有两个角相等,那么这两个角所对的边也相等。 4. 等边三角形的性质: 等边三角形的三个内角都相等,并且每一个角都等于60 5. 等边三角形的判定: (1)三个角都相等的三角形是等边三角形; (2)有一个角是60的等腰三角形是等边三角形。 6. 含30角的直角三角形的性质: 在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半。二、直角三角形 1. 认识直角三角形。学会用符号和字母表示直角三角形。 按照角的
9、度数对三角形进行分类:如果三角形中有一个角是直角,那么这个三角形叫直角三角形。通常用符号“Rt”表示“直角三角形”,其中直角所对的边称为直角三角形的斜边,构成直角的两边称为直角边。如果ABC是直角三角形,习惯于把以C为顶点的角当成直角。用三角A、B、C对应的小写字母a、b、c分别表示三个角的对边。 如果ABAC且A90,显然这个三角形既是等腰三角形,又是直角三角形,我们称之为等腰直角三角形。 2. 掌握“直角三角形两个锐角互余”的性质。会运用这一性质进行直角三角形中的角度计算以及简单说理。 3. 会用“两个锐角互余的三角形是直角三角形”这个判定方法判定直角三角形。 4. 掌握“直角三角形斜边上
10、中线等于斜边的一半”性质。能通过操作探索出这一性质并能灵活应用。5在直角三角形中如果一个锐角是30,则它所对的直角边等于斜边的一半”。难点:在直角三角形中如何正确添加辅助线 通常有两种辅助线:斜边上的高线和斜边上的中线。【例题精讲】 双基训练*1.已知等腰三角形ABC的底边BC=8,|AC-BC|=3,则腰AC的长为 。*二.若等腰三角形的周长为12,腰长为x,则腰长x的取值范围是 。*三.已知等腰三角形一腰上的中线把这个三角形的周长分为15和6两部分,则腰长与底边的长分别为 。*四.若等腰三角形一腰上的高等于腰长的一半,则这条高与底边的夹角为 。*五.在ABC中,AB=AC,AB的中垂线与A
11、C所在直线相交所得的锐角为500,则底角B的大小为 。*六.已知两根木棒的长分别是8cm、10cm,要选择第三根木棒将它们钉成一个三角形,那么第三根木棒长x的范围是 ;如果以5cm为等腰三角形的一边,另一边为10cm,则它的周长应为 。*7.图14-32是由两个全等的有一个角为300的直角三角形拼成的,其中,两条长直角边在同一直线上,则图中等腰三角形的个数自变量( )。 (A)4个 (B)3个 (C)2个 (D)1个 *八.若等腰三角形一腰上的高与另一腰的夹角为300,腰长为a,则其底边上的高是 。纵向应用*1.如图14-33,在ABC中,D、E分别是AC、AB边上的点,BD与CE交于点O,给
12、出下列四个条件:EBO=DCO;BEO=CDO;BE=CD;OB=OC。 (1)上述四个条件中,哪两个条件可判定ABC是等腰三角形(用序号写出所有情形)? (2)选择第(1)小题中的一种情形,证明:ABC是等腰三角形。*二.如图14-34,已知1=2,EFAD于点P,交BC延长线于点M,求证:BME=(ACB-B).*三.如图14-35,在RtABC中,C=900,ADBC,CBE=ABE。求证:ED=2AB *四.如图14-36,在ABC中,AB=AC,CM是边AB上的中线,BD=AB,求证:CD=2CM*五.如图14-37,在ABC中,AD是A的平分线,CDAD,垂足为D,G为BC的中点,求证:DGC=B。*6. 如图14-38,已知等边ABC的周长为6,BD是AC边上的高,E是BC延长线上一点,CD=CE,求BDE的周长。*7. 如图14-39,已知AB=AC,BD、CE分别是B、C的平分线,AMBD于点M,ANCE于点N,求证:AMN是等腰三角形。横向拓展*一. 已知等腰三角形三边的长为a、b、c且a=c,若关于x的一元二次方程ax2-bx+c=0的两根之差为,则等腰三角
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1