1、1234512y 方程4x7 y =55的正整数解有x = 5 x = 12 y = 5 y = 13、分离系数法 求7x2 y =38的整数解 y =19-3x-x令 t=xx=2 t则 y=19-7t2t019-7t0 (t为整) 2t0t=2,1当 t=2时, x=22=4 x=4y=19-72=5 y =5当 t=1时, x=21=2 x=2 1=12 y=12 第四十周 不定方程专题简析:当方程的个数比方程中未知数的个数少时,我们就称这样的方程为不定方程。如5x3y9就是不定方程。这种方程的解是不确定的。如果不加限制的话,它的解有无数个;如果附加一些限制条件,那么它的解的个数就是有限
2、的了。如5x3y9的解有:x2.4 x2.7 x3.06 x3.6 y1 y1.5 y2.1 y3 如果限定x、y的解是小于5的整数,那么解就只有x3,Y2这一组了。因此,研究不定方程主要就是分析讨论这些限制条件对解的影响。 解不定方程时一般要将原方程适当变形,把其中的一个未知数用另一个未知数来表示,然后再一定范围内试验求解。解题时要注意观察未知数的特点,尽量缩小未知数的取值范围,减少试验的次数。 对于有3个未知数的不定方程组,可用削去法把它转化为二元一次不定方程再求解。 解答应用题时,要根据题中的限制条件(有时是明显的,有时是隐蔽的)取适当的值。例1 求3x+4y23的自然数解。 先将原方程
3、变形,y。可列表试验求解:67Y所以方程3x+4y23的自然数解为 X=1 x=5 Y=5 y=2练习一1、 求3x+2y25的自然数解。2、 求4x+5y37的自然数解。3、 求5x3y16的最小自然数解。例2 求下列方程组的正整数解。5x+7y+3z253xy6z2这是一个三元一次不定方程组。解答的实话,要先设法消去其中的一个未知数,将方程组简化成例1那样的不定方程。5x+7y+3z25 3xy6z2 由2+,得13x+13y52 X+y4 把式变形,得y4x。因为x、y、z都是正整数,所以x只能取1、2、3. 当x1时,y3 当x2时,y2 当x3时,y1 把上面的结果再分别代入或,得x
4、1,y3时,z无正整数解。 x2,y2时,z也无正整数解。 x3时,y1时,z1.所以,原方程组的正整数解为 x1 y1 z1练习2求下面方程组的自然数解。1、 4x+3y2z7 2、 7x+9y+11z683x+2y+4z21 5x+7y+9z524、 5x+7y+4z26例3 一个商人将弹子放进两种盒子里,每个大盒子装12个,每个小盒子装5个,恰好装完。如果弹子数为99,盒子数大于9,问两种盒子各有多少个? 两种盒子的个数都应该是自然数,所以要根据题意列出不定方程,再求出它的自然数解。 设大盒子有x个,小盒子有y个,则 12x+5y99(x0,y0,x+y9) y(9912y)经检验,符合
5、条件的解有: x2 x7 y15 y3 所以,大盒子有2个,小盒子有15个,或大盒子有7个,小盒子有3个。练习3.1、 某校6(1)班学生48人到公园划船。如果每只小船可坐3人,每只大船可坐5人。那么需要小船和大船各几只?(大、小船都有)2、 甲级铅笔7角钱一枝,乙级铅笔3角钱一枝,小华用六元钱恰好可以买两种不同的铅笔共几枝?3、 小华和小强各用6角4分买了若干枝铅笔,他们买来的铅笔中都是5分一枝和7分一枝的两种,而且小华买来的铅笔比小强多,小华比小强多买来多少枝?例题4买三种水果30千克,共用去80元。其中苹果每千克4元,橘子每千克3元,梨每千克2元。问三种水果各买了多少千克?设苹果买了x千
6、克,橘子买了y千克,梨买了(30xy)千克。根据题意得: 4x+3y+2(30xy)82 x10由式子可知:y20,则y必须是2的倍数,所以y可取2、4、6、8、10、12、14、16、18。因此,原方程的解如下表:苹果98橘子10141618梨1917151311练习41、 有红、黄、蓝三种颜色的皮球共26只,其中蓝皮球的只数是黄皮球的9倍,蓝皮球有多少只?2、 用10元钱买25枝笔。已知毛笔每枝2角,彩色笔每枝4角,钢笔每枝9角。问每种笔各买几枝?(每种都要买)3、 晓敏在文具店买了三种贴纸;普通贴纸每张8分,荧光纸每张1角,高级纸每张2角。她一共用了一元两角两分钱。那么,晓敏的三种贴纸的
7、总数最少是多少张?例5 某次数学竞赛准备例2枝铅笔作为奖品发给获得一、二、三等奖的学生。原计划一等奖每人发6枝,二等奖每人发3枝,三等奖每人发2枝。后又改为一等奖每人发9枝,二等奖每人发4枝,三等奖每人发1枝。问:一、二、三等奖的学生各有几人? 设一等奖有x人,二等奖有y人,三等奖有z人。则 6x+3y+2z22 9x+4y+z22 由2,得12x+5y22 y x1x只能取1。Y2,代入得z5,原方程的解为 y2 z5所以,一等奖的学生有1人,二等奖的学生有2人,三等奖的学生有5人。练习51、 某人打靶,8发打了53环,全部命中在10环、7环和5环。他命中10环、7环和5环各几发?2、 篮子
8、里有煮蛋、茶叶蛋和皮蛋30个,价值24元。已知煮蛋每个0.60元,茶叶蛋每个1元,皮蛋每个1.20元。问篮子里最多有几个皮蛋?3、 一头猪卖3个银币,一头山羊卖1个银币,一头绵羊买个银币。有人用100个银币卖了这三种牲畜100头。问猪、山羊、绵羊各几头?答案:练11、 x1 x3 x5 x7 y11 y8 y5 y22、 x3 x8 y11 y14、 x5 y3练21、 x1y3z32、 x3 x4y4 y2z1 z23、 x3y1z1练31、 设需要小船x只,大船y只。则3x+5y48,y根据题意,x可取1、6、11,方程的解是 x1 x6 x11 y9 y6 y32、 设买甲级笔x枝,乙级
9、笔y枝,则7x+3y60,y。x 方程的个数少于未知数的个数的方程(或方程组)称为不定方程(或不定方程组)。它的解是不定的。如果没有给定不定方程的某种限制条件,那么它就有无限多个解。本讲中所涉及的不定方程根据题目的要求和实际情况把解局限在一定的范围内,它可能有解,也可能无解,如果有解,也只能是有限个解。但是,限制的条件,有时很隐蔽,需要我们去认真思考。例1 工程队要铺78米长的地下排水管道,仓库中有3米和5米长的两种管子,问两种管子各用多少根?例2在一个盒子里装有蟋蟀和蜘蛛若干只,共46只脚,求蟋蟀和蜘蛛各有多少只?例3将601个球分别装在大小两种包装盒里,大盒每盒装5个,小盒每盒装3个。求使用的包装盒的个数有多少种不同的安排方法?例4将426个乒乓球装在三种盒子里。大盒每盒装25个,中盒每盒装20个,小盒每盒装16个。现共装了24盒,求用了多少个大盒?【例5】小李同学把他出生的月份乘以,再把出生日期乘以,把他们加起来是,试求小李生日是哪一天?说明:通过以上例题说明,小学生解不定方程,应该紧紧结合题意及数字特征,灵活运用学习过的知识来确定解的限制范围。【例6】
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1