ImageVerifierCode 换一换
格式:DOCX , 页数:17 ,大小:293.93KB ,
资源ID:14483846      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/14483846.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(12位AD转换器中英文翻译资料Word格式文档下载.docx)为本站会员(b****2)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

12位AD转换器中英文翻译资料Word格式文档下载.docx

1、12-Bit A/D ConverterCIRCUIT OPERATIONThe AD574A is a complete 12-bit A/D converter which requires no external components to provide the complete successive approximation analog-to-digital conversion function. A block diagram of the AD574A is shown in Figure 1.Figure 1. Block Diagram of AD574A 12-Bit

2、 A-to-D ConverterWhen the control section is commanded to initiate a conversion (as described later), it enables the clock and resets the successiveapproximation register (SAR) to all zeros. Once a conversion cycle has begun, it cannot be stopped or restarted and data is not available from the outpu

3、t buffers. The SAR, timed by the clock, will sequence through the conversion cycle and return an end-of-convert flag to the control section. The control section will then disable the clock, bring the output status flag low, and enable control functions to allow data read functions by external comman

4、d. During the conversion cycle, the internal 12-bit current output DAC is sequenced by the SAR from the most significant bit (MSB) to least significant bit (LSB) to provide an output current which accurately balances the input signal current through the 5k(or10k) input resistor. The comparator deter

5、mines whether the addition of each successively-weighted bit current causes the DAC current sum to be greater or less than the input current; if the sum is less, the bit is left on; if more, the bit is turned off. After testing all the bits, the SAR contains a 12-bit binary code which accurately rep

6、resents the input signal to within 1/2 LSB. The temperature-compensated buried Zener reference provides the primary voltage reference to the DAC and guarantees excellent stability with both time and temperature. The reference is trimmed to 10.00 volts 0.2%; it can supply up to 1.5 mA to an external

7、load in addition to the requirements of the reference input resistor (0.5 mA) and bipolar offset resistor (1 mA) when the AD574A is powered from 15 V supplies. If the AD574A is used with 12 V supplies, or if external current must be supplied over the full temperature range, an external buffer amplif

8、ier is recommended. Any external load on the AD574A reference must remain constant during conversion. The thin-film application resistors are trimmed to match the full-scale output current of the DAC. There are two 5 k input scaling resistors to allow either a 10 volt or 20 volt span. The 10 k bipol

9、ar offset resistor is grounded for unipolar operation and connected to the 10 volt reference for bipolar operation.DRIVING THE AD574 ANALOG INPUTFigure 2. Op Amp AD574A InterfaceThe output impedance of an op amp has an open-loop value which, in a closed loop, is divided by the loop gain available at

10、 the frequency of interest. The amplifier should have acceptable loop gain at 500 kHz for use with the AD574A. To check whether the output properties of a signal source are suitable, monitor the AD574s input with an oscilloscope while a conversion is in progress. Each of the 12 disturbances should s

11、ubside in sorless. For applications involving the use of a sample-and-hold amplifier, the AD585 is recommended. The AD711 or AD544 op amps are recommended for dc applications. SAMPLE-AND-HOLD AMPLIFIERSAlthough the conversion time of the AD574A is a maximum of 35 s, to achieve accurate 12-bit conver

12、sions of frequencies greater than a few Hz requires the use of a sample-and-hold amplifier (SHA). If the voltage of the analog input signal driving the AD574A changes by more than 1/2 LSB over the time interval needed to make a conversion, then the input requires a SHA. The AD585 is a high linearity

13、 SHA capable of directly driving the analog input of the AD574A. The AD585s fast acquisition time, low aperture and low aperture jitter are ideally suited for high-speed data acquisition systems. Consider the AD574A converter with a 35 s conversion time and an input signal of 10 V p-p: the maximum f

14、requency which may be applied to achieve rated accuracy is 1.5 Hz. However, with the addition of an AD585, as shown in Figure 3, the maximum frequency increases to 26 kHz.The AD585s low output impedance, fast-loop response, and low droop maintain 12-bits of accuracy under the changing load condition

15、s that occur during a conversion, making it suitable for use in high accuracy conversion systems. Many other SHAs cannot achieve 12-bits of accuracy and can thus compromise a system. The AD585 is recommended for AD574A applications requiring a sample and hold.Figure 3. AD574A with AD585 Sample and H

16、oldSUPPLY DECOUPLING AND LAYOUTCONSIDERATIONSIt is critically important that the AD574A power supplies be filtered, well regulated, and free from high frequency noise. Use of noisy supplies will cause unstable output codes. Switching power supplies are not recommended for circuits attempting to achieve 12-bit accuracy unless great care is used in filtering any switching spikes present in the output. R

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1