ImageVerifierCode 换一换
格式:DOCX , 页数:17 ,大小:34.74KB ,
资源ID:14460255      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/14460255.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(关于斜拉桥的中英文翻译.docx)为本站会员(b****2)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

关于斜拉桥的中英文翻译.docx

1、关于斜拉桥的中英文翻译Study on nonlinear analysis of a highly redundant cable-stayed bridge1AbstractA comparison on nonlinear analysis of a highly redundant cable-stayed bridge is performed in the study. The initial shapes including geometry and prestress distribution of the bridge are determined by using a tw

2、o-loop iteration method, i.e., an equilibrium iteration loop and a shape iteration loop. For the initial shape analysis a linear and a nonlinear computation procedure are set up. In the former all nonlinearities of cable-stayed bridges are disregarded, and the shape iteration is carried out without

3、considering equilibrium. In the latter all nonlinearities of the bridges are taken into consideration and both the equilibrium and the shape iteration are carried out. Based on the convergent initial shapes determined by the different procedures, the natural frequencies and vibration modes are then

4、examined in details. Numerical results show that a convergent initial shape can be found rapidly by the two-loop iteration method, a reasonable initial shape can be determined by using the linear computation procedure, and a lot of computation efforts can thus be saved. There are only small differen

5、ces in geometry and prestress distribution between the results determined by linear and nonlinear computation procedures. However, for the analysis of natural frequency and vibration modes, significant differences in the fundamental frequencies and vibration modes will occur, and the nonlinearities

6、of the cable-stayed bridge response appear only in the modes determined on basis of the initial shape found by the nonlinear computation.2. IntroductionRapid progress in the analysis and construction of cable-stayed bridges has been made over the last three decades. The progress is mainly due to dev

7、elopments in the fields of computer technology, high strength steel cables, orthotropic steel decks and construction technology. Since the first modern cable-stayed bridge was built in Sweden in 1955, their popularity has rapidly been increasing all over the world. Because of its aesthetic appeal, e

8、conomic grounds and ease of erection, the cable-stayed bridge is considered as the most suitable construction type for spans ranging from 200 to about 1000 m. The worlds longest cable-stayed bridge today is the Tatara bridge across the Seto Inland Sea, linking the main islands Honshu and Shikoku in

9、Japan. The Tatara cable-stayed bridge was opened in 1 May, 1999 and has a center span of 890m and a total length of 1480m. A cable-stayed bridge consists of three principal components, namely girders, towers and inclined cable stays. The girder is supported elastically at points along its length by

10、inclined cable stays so that the girder can span a much longer distance without intermediate piers. The dead load and traffic load on the girders are transmitted to the towers by inclined cables. High tensile forces exist in cable-stays which induce high compression forces in towers and part of gird

11、ers. The sources of nonlinearity in cable-stayed bridges mainly include the cable sag, beam-column and large deflection effects. Since high pretension force exists in inclined cables before live loads are applied, the initial geometry and the prestress of cable-stayed bridges depend on each other. T

12、hey cannot be specified independently as for conventional steel or reinforced concrete bridges. Therefore the initial shape has to be determined correctly prior to analyzing the bridge. Only based on the correct initial shape a correct deflection and vibration analysis can be achieved. The purpose o

13、f this paper is to present a comparison on the nonlinear analysis of a highly redundant stiff cable-stayed bridge, in which the initial shape of the bridge will be determined iteratively by using both linear and nonlinear computation procedures. Based on the initial shapes evaluated, the vibration f

14、requencies and modes of the bridge are examined.3. System equations3.1. General system equationWhen only nonlinearities in stiffness are taken into account, and the system mass and damping matrices are considered as constant, the general system equation of a finite element model of structures in non

15、linear dynamics can be derived from the Lagranges virtual work principle and written as follows:Kjbj-Sjaj= Mq”+ Dq3.2. Linearized system equationIn order to incrementally solve the large deflection problem, the linearized system equations has to be derived. By taking the first order terms of the Tay

16、lors expansion of the general system equation, the linearized equation for a small time (or load) interval is obtained as follows: Mq”+Dq +2Kq=p- up3.3. Linearized system equation in staticsIn nonlinear statics, the linearized system equation becomes2Kq=p- up4. Nonlinear analysis4.1. Initial shape a

17、nalysisThe initial shape of a cable-stayed bridge provides the geometric configuration as well as the prestress distribution of the bridge under action of dead loads of girders and towers and under pretension force in inclined cable stays. The relations for the equilibrium conditions, the specified

18、boundary conditions, and the requirements of architectural design should be satisfied. For shape finding computations, only the dead load of girders and towers is taken into account, and the dead load of cables is neglected, but cable sag nonlinearity is included. The computation for shape finding i

19、s performed by using the two-loop iteration method, i.e., equilibrium iteration and shape iteration loop. This can start with an arbitrary small tension force in inclined cables. Based on a reference configuration (the architectural designed form), having no deflection and zero prestress in girders

20、and towers, the equilibrium position of the cable-stayed bridges under dead load is first determined iteratively (equilibrium iteration). Although this first determined configuration satisfies the equilibrium conditions and the boundary conditions, the requirements of architectural design are, in ge

21、neral, not fulfilled. Since the bridge span is large and no pretension forces exist in inclined cables, quite large deflections and very large bending moments may appear in the girders and towers. Another iteration then has to be carried out in order to reduce the deflection and to smooth the bendin

22、g moments in the girder and finally to find the correct initial shape. Such an iteration procedure is named here the shape iteration. For shape iteration, the element axial forces determined in the previous step will be taken as initial element forces for the next iteration, and a new equilibrium co

23、nfiguration under the action of dead load and such initial forces will be determined again. During shape iteration, several control points (nodes intersected by the girder and the cable) will be chosen for checking the convergence tolerance. In each shape iteration the ratio of the vertical displace

24、ment at control points to the main span length will be checked, i.e., The shape iteration will be repeated until the convergence tolerance, say 10-4, is achieved. When the convergence tolerance is reached, the computation will stop and the initial shape of the cable-stayed bridges is found. Numerica

25、l experiments show that the iteration converges monotonously and that all three nonlinearities have less influence on the final geometry of the initial shape. Only the cable sag effect is significant for cable forces determined in the initial shape analysis, and the beam-column and large deflection

26、effects become insignificant.The initial analysis can be performed in two different ways: a linear and a nonlinear computation procedure. 1. Linear computation procedure: To find the equilibrium configuration of the bridge, all nonlinearities of cable stayed bridges are neglected and only the linear

27、 elastic cable, beam-column elements and linear constant coordinate transformation coefficients are used. The shape iteration is carried out without considering the equilibrium iteration. A reasonable convergent initial shape is found, and a lot of computation efforts can be saved.2. Nonlinear compu

28、tation procedure: All nonlinearities of cable-stayed bridges are taken into consideration during the whole computation process. The nonlinear cable element with sag effect and the beam-column element including stability coefficients and nonlinear coordinate transformation coefficients are used. Both

29、 the shape iteration and the equilibrium iteration are carried out in the nonlinear computation. NewtonRaphson method is utilized here for equilibrium iteration.4.2. Static deflection analysisBased on the determined initial shape, the nonlinear static deflection analysis of cable-stayed bridges unde

30、r live load can be performed incrementwise or iterationwise. It is well known that the load increment method leads to large numerical errors. The iteration method would be preferred for the nonlinear computation and a desired convergence tolerance can be achieved. Newton Raphson iteration procedure

31、is employed. For nonlinear analysis of large or complex structural systems, a fulliteration procedure (iteration performed for a single full load step) will often fail. An incrementiteration procedure is highly recommended, in which the load will be incremented, and the iteration will be carried out

32、 in each load step. The static deflection analysis of the cable stayed bridge will start from the initial shape determined by the shape finding procedure using a linear or nonlinear computation. The algorithm of the static deflection analysis of cable-stayed bridges is summarized in Section 4.4.2.4.

33、3. Linearized vibration analysisWhen a structural system is stiff enough and the external excitation is not too intensive, the system may vibrate with small amplitude around a certain nonlinear static state, where the change of the nonlinear static state induced by the vibration is very small and ne

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1