ImageVerifierCode 换一换
格式:DOCX , 页数:10 ,大小:31.38KB ,
资源ID:14413262      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/14413262.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Optionsformicroholemaking微孔的加工方法大学毕业论文外文文献翻译及原文Word文档格式.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

Optionsformicroholemaking微孔的加工方法大学毕业论文外文文献翻译及原文Word文档格式.docx

1、文献、资料中文题目:微孔的加工方法文献、资料英文题目:Options for micro-holemaking文献、资料来源:文献、资料发表(出版)日期:院 (部): 专 业:班 级:姓 名:学 号:指导教师:翻译日期: 2017.02.14外文原文As in the macroscale-machining world, holemaking is one of the most if not the mostfrequently performed operations for micromachining. Many options exist for how those holes a

2、re created. Each has its advantages and limitations, depending on the required hole diameter and depth, workpiece material and equipment requirements. This article covers holemaking with through-coolant drills and those without coolant holes, plunge milling, microdrilling using sinker EDMs and laser

3、 drilling. Helpful Holes Getting coolant to the drill tip while the tool is cutting helps reduce the amount of heat at the tool/workpiece interface and evacuate chips regardless of hole diameter. But through-coolant capability is especially helpful when deep-hole microdrilling because the tools are

4、delicate and prone to failure when experiencing recutting of chips, chip packing and too much exposure to carbides worst enemyheat.When applying flood coolant, the drill itself blocks access to the cutting action. “Somewhere about 3 to 5 diameters deep, the coolant has trouble getting down to the ti

5、p,” said Jeff Davis, vice president of engineering for Harvey Tool Co., Rowley, Mass. “It becomes wise to use a coolant-fed drill at that point.” In addition, flood coolant can cause more harm than good when microholemaking. “The pressure from the flood coolant can sometimes snap fragile drills as t

6、hey enter the part,” Davis said. The toolmaker offers a line of through-coolant drills with diameters from 0.039 to 0.125 that are able to produce holes up to 12 diameters deep, as well as microdrills without coolant holes from 0.002 to 0.020. Having through-coolant capacity isnt enough, though. Coo

7、lant needs to flow at a rate that enables it to clear the chips out of the hole. Davis recommends, at a minimum, 600 to 800 psi of coolant pressure. “It works much better if you have higher pressure than that,” he added. To prevent those tiny coolant holes from becoming clogged with debris, Davis al

8、so recommends a 5m or finer coolant filter. Another recommendation is to machine a pilot, or guide, hole to prevent the tool from wandering on top of the workpiece and aid in producing a straight hole. When applying a pilot drill, its important to select one with an included angle on its point thats

9、 equal to or larger than the included angle on the through-coolant drill that follows. The pilot drills diameter should also be slightly larger. For example, if the pilot drill has a 120 included angle and a smaller diameter than a through-coolant drill with a 140 included angle, “then youre catchin

10、g the coolant-fed drills corners and knocking those corners off,” Davis said, which damages the drill. Although not mandatory, pecking is a good practice when microdrilling deep holes. Davis suggests a pecking cycle that is 30 to 50 percent of the diameter per peck depth, depending on the workpiece

11、material. This clears the chips, preventing them from packing in the flute valleys.Lubricious ChillTo further aid chip evacuation, Davis recommends applying an oil-based metalworking fluid instead of a waterbased coolant because oil provides greater lubricity. But if a shop prefers using coolant, th

12、e fluid should include EP (extreme pressure) additives to increase lubricity and minimize foaming. “If youve got a lot of foam,” Davis noted, “the chips arent being pulled out the way they are supposed to be.” He added that another way to enhance a tools slipperiness while extending its life is with

13、 a coating, such as titanium aluminum nitride. TiAlN has a high hardness and is an effective coating for reducing heats impact when drilling difficult-to-machine materials, like stainless steel. David Burton, general manager of Performance Micro Tool, Janesville, Wis., disagrees with the idea of coa

14、ting microtools on the smaller end of the spectrum. “Coatings on tools below 0.020 typically have a negative effect on every machining aspect, from the quality of the initial cut to tool life,” he said. Thats because coatings are not thin enough and negatively alter the rake and relief angles when a

15、pplied to tiny tools. However, work continues on the development of thinner coatings, and Burton indicated that Performance Micro Tool, which produces microendmills and microrouters and resells microdrills, is working on a project with others to create a submicron-thickness coating. “Were probably 6 months to 1 year from testing it in the market,” Burton said. The microdrills Performance offers are basically circuit-board drills, which are also effective for cutting metal. All the tools are without through-coolant capability. “I had a customer drill a 0.004-dia. hole in stainless steel,

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1