ImageVerifierCode 换一换
格式:DOCX , 页数:22 ,大小:106.66KB ,
资源ID:14374576      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/14374576.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数学 外文翻译 外文文献 英文文献 真空压力播种机的数学建模Word格式.docx)为本站会员(b****4)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

数学 外文翻译 外文文献 英文文献 真空压力播种机的数学建模Word格式.docx

1、结果与讨论214. Conclusions13结 论265.Acknowledgements 13鸣 谢 26Mathematical Modelling of Vacuum Pressure on a Precision SeederD. Karayel 1, Z. B. Barut 2 and A. zmerzi 11 Akdeniz University, Faculty of Agriculture, Department of Agricultural Machinery, 07070, Antalya, Turkey2 ukurova University, Faculty of

2、Agriculture, Department of Agricultural Machinery, Adana, Turkey; e-mail of corresponding author: dkarayelakdeniz.edu.tr Received 9 July 2003; accepted 19 January 2004. Available online 13 April 2004. AbstractThe purpose of this research was to determine the optimum vacuum pressure of a precision va

3、cuum seeder and to develop mathematical models by using some physical properties of seeds such as one thousand kernel mass, projected area, sphericity and kernel density. Maize, cotton, soya bean, watermelon, melon, cucumber, sugarbeet and onion seeds were used in laboratory tests. One thousand kern

4、el mass, projected area, sphericity and kernel density of seeds varied from 4.3 to 372.5g, 577mm2, 38.485.8% and 4401310kgm3, respectively. The optimum vacuum pressure was determined as 4.0kPa for maize I and II; 3.0kPa for cotton, soya bean and watermelon I; 2.5kPa for watermelon II, melon and cucu

5、mber; 2.0kPa for sugarbeet; and 1.5kPa for onion seeds. The vacuum pressure was predicted by mathematical models. According to the results, the final model could satisfactorily describe the vacuum pressure of the precision vacuum seeder with a chi-square of 2.51103, root mean square error of 2.74102

6、 and modelling efficiency of 0.99. Nomenclature a, b, c, d, e regression coefficients Em modelling efficiency Erms root mean square error kexp experimental vacuum pressure, kPa kexp, mean mean value of experimental vacuum pressure, kPa kpre predicted vacuum pressure, kPa L length, mm m1000 one thous

7、and kernel mass, g N number of observation n number of constants in the model P projected area, mm2 Pv vacuum pressure, kPa p probability R2 coefficient of determination T thickness, mm W width, mm sphericity, % 2 chi-square k kernel density, kgm3Article Outline1. Introduction 2. Literature review 3

8、. Materials and methods 4. Results and discussion 5. Conclusions Acknowledgements References1. IntroductionPrecision sowing has been a major thrust of agricultural engineering research for many years; however, most of the research and development work has dealt with seeders for agronomic crops. The

9、main purpose of sowing is to place the seed to a certain space and a depth in the seedbed. Precision seeders place seeds at the required spacing and provide a better growing area per seed. There are two common types of precision seeders: belt and vacuum. Precision vacuum seeders have a metering plat

10、e with metering holes on a predetermined radius. A vacuum is applied to these metering holes by means of a race machined in a backing plate. As the plate rotates, the vacuum applied to the metering holes enables them to pick up seeds from the seed hopper. Precision vacuum seeders have the following

11、advantages over the mechanical seeders: better working quality, more precise seed rates with lower rate of seed damage, better control and adjustment of upkeep and drift of seeds, and broader spectrum of applicability (Soos et al., 1989). A seeder should place a seed in an environment in which the s

12、eed will reliably germinate and emerge. A number of factors affect the spacing of plants. The seed selection mechanism may fail to select or drop a seed resulting in large spacing between seeds. The mechanism may select and drop multiple seeds resulting in small spacings between seeds. Seed quality,

13、 soil conditions, seeder design and the skill of the operator all play a part in determining the final plant stand. The physical properties of seeds are essential for the design of equipment for handling, processing, storing and sowing the kernels. Various types of cleaning, grading, separation and

14、sowing equipment are designed on the basis of the physical properties of seeds. However, no model has been found to describe seeder parameters such as vacuum pressure related with physical properties of seeds. The physical properties of the seeds are the most important factors in determining the opt

15、imum vacuum pressure of the precision vacuum seeder. In this study, using some of these, e.g. one thousand kernel mass, projected area, sphericity and kernel density, mathematical models were developed to predict optimum vacuum pressure. The experimental values of vacuum pressure were determined from laboratory test proce

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1