ImageVerifierCode 换一换
格式:DOCX , 页数:16 ,大小:647.66KB ,
资源ID:1426668      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/1426668.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(十年高考理科数学专题八立体几何 第二十二讲 空间几何体的三视图表面积和体积答案.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

十年高考理科数学专题八立体几何 第二十二讲 空间几何体的三视图表面积和体积答案.docx

1、十年高考理科数学专题八 立体几何 第二十二讲 空间几何体的三视图表面积和体积答案专题八 立体几何初步第二十二讲 空间几何体的三视图、表面积和体积答案部分2019年1.解析 该模型为长方体,挖去四棱锥后所得的几何体,其中O为长方体的中心,分别为所在棱的中点,所以该模型体积为:,打印所用原料密度因为为,不考虑打印损耗,所以制作该模型所需原料的质量为:2.解析 因为长方体的体积是120,E为的中点,所以,所以三棱锥的体积:.3.解析 由题可知,四棱锥底面正方形的对角线长为2,且垂直相交平分,由勾股定理得,正四棱锥的高为2.因为圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,则圆柱的上底面直径为底面正方

2、形对角线的一半等于1,即半径等于,由相似比可得圆柱的高为正四棱锥高的一半,为1.所以该圆柱的体积为.4.解析:由及是边长为2的正三角形可知,三棱锥为正三棱锥,则顶点P在底面的射影O为底面三角形的中心.连接BO并延长,交AC于G,则,又,可得AC平面PBG,则PBAC.因为E,F分别是PA,AB的中点,所以.又,即EFCE,所以PBCE,得PB平面PAC.所以PBPA,PBPC.又因为,是正三角形,所以,故所以正三棱锥的三条侧棱两两互相垂直. 把三棱锥补形为正方体,则正方体外接球即为三棱锥的外接球,其直径为正方体的体对角线的长度,即, 半径为,则球O的体积为故选D5.解析:由三视图还原原几何体如

3、图,该几何体为直五棱柱,底面五边形的面积可用两个直角梯形的面积求解,即,高为6,则该柱体的体积是故选B6.解析:由三视图还原原几何体如图所示,该几何体是把棱长为4的正方体去掉一个四棱柱,则该几何体的体积.2010-2018年1C【解析】解法一 将三视图还原为直观图,几何体是底面为直角梯形,且一条侧棱和底面垂直的四棱锥,如图所示,易知, 平面,故,为直角三角形,平面,平面,又,且,平面,又平面,为直角三角形,容易求得,故不是直角三角形,故选C解法二 在正方体中作出该几何体的直观图,记为四棱锥,如图,由图可知在此四棱锥的侧面中,直角三角形的个数为3,故选C2B【解析】由三视图可知,该几何体为如图所

4、示的圆柱,该圆柱的高为2,底面周长16画出该圆柱的侧面展开图,如图所示,连接,则,则从到的路径中,最短路径的长度为故选B图 图3A【解析】由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A4B【解析】设等边三角形的边长为,则,得设的外接圆半径为,则,解得,所以球心到所在平面的距离,则点到平面的最大距离,所以三棱锥体积的最大值故选B5D【解析】如图以为底面矩形一边的四边形有、4个,每一个面都有4个顶点,所以阳马的个数为16个故选D6C【解析】由三视图可知,该几何体是一个底面为直角梯形的直四棱柱,所以该几何体的体积故选C7B【解析】由题意可知,该几何体是

5、由一个三棱锥和一个三棱柱构成,则表面所有梯形之和为选B8B【解析】解法一 由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积,上半部分是一个底面半径为3,高为6的圆柱的一半,其体积,故该组合体的体积故选B解法二 该几何体可以看作是高为14,底面半径为3的圆柱的一半,所以体积为选B9B【解析】圆柱的轴截面如图,所以圆柱底面半径,那么圆柱的体积是,故选B10A【解析】该几何体是由一个高为3的圆锥的一半,和高为3的三棱锥组成(如图),其体积为:选A11B【解析】借助正方体可知粗线部分为该几何体是四棱锥,最长的棱长是体对角线,所以选B12C【解析】由三视图可知,四棱锥的底面

6、是边长为1的正方形,高为1,其体积设半球的半径为,则,即,所以半球的体积故该几何体的体积故选C13A【解析】由三视图可得此几何体为一个球切割掉后剩下的几何体,设球的半径为,故,所以,表面积,选A14C【解析】该几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为,周长为,圆锥母线长为,圆柱高为由图得,由勾股定理得:,故选C15B【解析】由三视图可得该几何体是平行六面体,上下底面是边长为3的正方形,故面积都是9,前后两个侧面是平行四边形,一边长为3、该边上的高为6,故面积都为18,左右两个侧面是矩形,边长为和3,故面积都为,则该几何体的表面积为2(9 +18+)=54 +16C【解析】由题意得,该几何

7、体为一立方体与四棱锥的组合,体积,故选C17D【解析】由三视图知:该几何体是半个圆柱,其中底面圆的半径为,母线长为,所以该几何体的表面积是,故选D18A【解析】这是一个三棱锥与半个圆柱的组合体,选A19D【解析】如图,设正方形的棱长为1,则截取部分为三棱锥,其体积为,又正方体的体积为1,则剩余部分的体积为,故所求比值为20B 【解析】 在长、宽、高分别为2、1、1的长方体中,该四面体是如图所示的三棱锥,表面积为21A【解析】由圆锥的对称性可知,要使其内接长方体最大,则底面为正方形,令此长方体底面对角线长为,高为,则由三角形相似可得,所以,长方体体积,当且仅当,即时取等号,故材料利用率为,选A2

8、2B【解析】由三视图可知,此组合体是由半个圆柱与半个球体组合而成,其表面积为,所以23B【解析】如图,设辅助正方体的棱长为4,三视图对应的多面体为三棱锥A - BCD,最长的棱为,选B24C【解析】原毛坯的体积,由三视图可知该零件为两个圆柱的组合体,其体积,故所求比值为25A【解析】如图,将边长为2的正方体截去两个角,26A【解析】圆柱的正视图是矩形,选A27D【解析】由三视图画出几何体的直观图,如图所示,则此几何体的表面积,其中是长方体的表面积,是三棱柱的水平放置的一个侧面的面积,是三棱柱的一个底面的面积,可求得,选D28C【解析】由题意可知,由面面垂直的性质定理可得平面,又,所以,故选C2

9、9A【解析】圆柱的底面半径为1,母线长为1,30B【解析】直观图为棱长为2的正方体割去两个底面半径为l的圆柱,所以该几何体的体积为31C【解析】由几何体的形成过程知所得几何体为圆柱,底面半径为1,高为1,其侧面积32B【解析】由直观图可知,该几何体由一个长方体和一个截角三棱柱组成从上往下看,外层轮廓线是一个矩形,矩形内部有一条线段连接的两个三角形33A【解析】由三视图知,该几何体为放到的半个圆柱底面半径为2高为4,上边放一个长为4宽为2高为2长方体,故其体积为 =,故选A34A【解析】还原后的直观图是一个长宽高依次为10,6 ,5的长方体上面是半径为3高为2的半个圆柱35C【解析】几何体是圆柱

10、与圆锥叠加而成它的体积为36B【解析】由三视图可知该几何体的体积:37D【解析】通过正视图及俯视图可看出该几何体为半个圆锥和一个三棱锥的组合体,故侧视图可以为D38C【解析】由三视图可知该几何体是底面为等腰梯形的放倒的一个直四棱柱,如图,所以该四棱柱的表面积39D【解析】选项A正确,平面,而在平面内,所以因为为正方形,所以,而与相交,所以平面,所以;选项B正确,因为,而在平面内,不在平面内,所以平面;选项C正确,设与的交点为,连结,则与平面所成的角,与平面所成的角,易知这两个角相等;选项D错误,与所成的角等于,而与所成的角等于,易知这两个角不相等40C【解析】该几何体由两个长方体组合而成,其表

11、面积等于下面长方体的全面积加上面长方体的4个侧面积之和.41B【解析】该几何体上半部是底面边长为4cm,高为2cm,的正四棱柱,其体积为;下半部分是上、下底面边长分别为4cm,8cm,高为2cm的正四棱台,其体积为,故其总体积为42【解析】连接,因为,分别为,的中点,所以,因为,分别为,的中点,所以,所以,所以四边形为平行四边形,又,所以四边形为正方形,又点到平面的距离为,所以四棱锥的体积为43【解析】正方体的棱长为2,以其所有面的中心为顶点的多面体是正八面体,其中正八面体的所有棱长都是,则该正八面体的体积为44【解析】如图连接交于,由题意,设等边三角形的边长为(),则,由题意可知三棱锥的高底

12、面,三棱锥的体积为,设,则(),令,解得,当时,单调递增;当时,单调递减,所以是取得最大值所以45【解析】设正方体边长为,由,得,外接球直径为,46【解析】由三视图可知,长方体的长、宽、高分别为2,1,1,圆柱的高为1,底面圆半径为1,所以47【解析】设球的半径为,则482【解析】根据三视图可知该四棱锥的底面是底边长为2m,高为1m的平行四边形,四棱锥的高为3m,故其体积为()49【解析】由三视图可知,该几何体是中间为一个底面半径为,高为的圆柱,两端是底面半径为,高为的圆锥,所以该几何体的体积5012【解析】由题意知,该六棱锥是正六棱锥,设该六棱锥的高为,则,解得,底面正六边形的中心到其边的距

13、离为,故侧面等腰三角形底边上的高为,该六棱锥的侧面积为51【解析】由题意可知直观图如图所示,结合三视图有平面,所以,三棱锥最长棱的棱长为52【解析】设甲、乙两个圆柱的底面半径分别是,母线长分别是则由,可得又两个圆柱的侧面积相等,即,则,所以53【解析】设正方体的棱长为,则正方体的体对角线为直径,即,即球半径若球的体积为,即,解得541:24【解析】三棱锥与三棱锥的 相似比为1:2,故体积之比为1:8又因三棱锥与三棱柱的体积之比为1:3所以,三棱锥与三棱柱的体积之比为1:24另:,所以5538【解析】由三视图知,此几何体为一个长为4,宽为3,高为1的长方体中心,去除一个半径为1的圆柱,所以表面积

14、为56【解析】该几何体是底面是直角梯形,高为的直四棱柱几何体的表面积是57【解析】,答案应填58【解析】由圆锥底面面积是这个球面面积的,得,所以,则小圆锥的高为,大圆锥的高为,所以比值为59【解析】()证明:平面平面平面,平面平面,平面,平面,(), 60【解析】()由已知得,因此,又为的中点,;同理;因此平面,又,平面BCG()在平面内,做,交的延长线于,由平面平面,知平面,又为的中点,因此到平面的距离是的一半,在中,所以61【解析】()连结,交于点O,连结DO,则O为的中点,因为D为AB的中点,所以OD,又因为OD平面,平面,所以 /平面;()由题意知平面 再由,得 , 故,即 所以62【解析】()证明:连接AC,交于BD于点,连接PO因为底面ABCD是菱形,所以,由知,再由知,面,因此()解:因为E是PA的中点,所以由知,因为,所以.又.故.由(1)知,63【解析】(1)由已知可得AE=3,BF=4,则折叠完后EG=3,GF=4,又因为EF=5,所以可得,又因为,可得,即所以平面DEG平面CFG.(2)过G作GO

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1