ImageVerifierCode 换一换
格式:DOCX , 页数:13 ,大小:505.11KB ,
资源ID:14240412      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/14240412.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(基于电流优化的磁悬浮系统的解耦控制算法大学论文文档格式.docx)为本站会员(b****1)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

基于电流优化的磁悬浮系统的解耦控制算法大学论文文档格式.docx

1、m 的总质量 悬浮架x轴的惯性 悬浮架y轴的惯性简介随着工业技术的进步,高精度定位系统在各种高科技领域中起着重要的作用。近年来,在精密运动控制设备广泛应用于先进的仪器和现代制造过程。电磁铁设计和控制电子的最新进展大大增加了其应用的广度,尤其是在定位、 对齐方式、 扫描和操纵方面。现代的压电致动器常用的在这些设备中,并有配备了超高分辨率的传感器内部控制回路。然而,大多压电致动器只能处理小的移动范围内,这可能对于许多应用并没有实际意义。由于压电致动器的缺点存在,一般认为磁悬浮系统需要克服这些缺点。过去的二十年中,很多研究人员 1-5推动了磁悬浮技术的发展。过去磁悬浮系统中取得的成果跨越许多领域。这

2、成功地应用于许多应用中,如高速磁悬浮列车、 隔振系统和磁悬浮轴承等。在这里我们只将研究短程旅行与精密定位领域的磁技术,然后设计和实现了原型磁悬浮系统,来验证它的高性能。磁悬浮的力/电流/气隙关系是非线性并在磁悬浮控制技术上有重要作用。在早期研究中,大多数的设计方法基于两种方法。一个是基于非线性受力在平衡点泰勒级数展开的线性控制策略。因此,偏离平衡点时线性控制策略的跟踪性能迅速恶化。另一种方法是增益调度 7 在磁悬浮力/电流/气隙三者的非线性关系在工作点先后线性化与适用于每个工作点控制器。Lairi和Bloch 8 磁性支撑系统提出了神经网络控制法。为了确保一致的性能独立工作点,许多研究者用过的

3、反馈线性化技术。反馈线性化利用电磁场的完整非线性描述,因此收益率一致的性能很大程度上独立于经营点气隙。David L. Trumper9 构建单自由度磁悬浮,然后比较了线性与非线性的数字控制方案在良好控制的实验环境中的性能。他的实验的结果表明在工作点变化范围大悬浮系统中,非线性控制器的优势超过常规控制器的。10 11 Ahmed El-hajjaji 设计一种非线性控制器基于微分几何理论,成功地控制在悬浮铁球位置在长时间范围内的运动。Jeffrey D. Lindlau提出了单一-自由度 (DOF) 磁悬浮轴承试验台的反馈线性化控制器。控制器在电压模式下试验台上实现,实验结果证实理论与实测的开

4、环反馈线性化系统场一致。反馈线性化技术已广泛应用于磁悬浮研究,但在大多数情况下它用来控制 1 自由度动态系统。如果磁悬浮系统中有更多的控制的变量,应采用优化技术。对此,3 自由度磁悬浮系统提出了一种系统的应用反馈线性化和电流优化。首先,我们将获得动态模型的磁悬浮列车。然后,此系统线性化,反馈线性化与电流优化介绍。最后,为了证明整个系统的性能,实验结果被供核查。本文组织如下所示。在第二章介绍了一种新的磁悬浮系统的设计,并推导出其动力学模型。在第三章中提出了一种利用反馈线性化与当前优化的解耦算法。与此解耦算法耦合和非线性磁悬浮系统是解耦和线性化。第四章设计系统控制器。然后,实验结果所示第五章。终于

5、在第六章中给出结论。磁悬浮系统的建模A. 磁悬浮简介图1为3自由度磁悬浮系统的原型,真实实验的磁悬浮如图2所示。有四个线圈铁芯固定在一个刚性的外部钢框架。为了简化控制算法,所有相同制造这些线圈的机械和电气参数。每个线圈的底部处于同一水平面。正在线圈蜂窝铝板和四个铁盘组成的悬浮架。蜂窝铝板是重量轻,结构刚性和平坦的表面。四个铁片固定在铝板表面的每个角落。每个线圈的轴被针对每个铁板的中心。在初始状态 (没有线圈中的电流),每个铁板与线圈之间的气隙是 3 毫米。表 1 所示的悬架系统指定的参数表1参数名称参数大小蜂窝铝板尺寸50050(mm3)铁盘子尺寸1402(mm3)悬浮液的质量3.5 (kg)

6、到 x 轴的惯性7.36E-002(kg.m2)到 y 轴的惯性每个线圈匝数1000每个线圈的直径28(mm)材料的核心铁图 1.磁悬浮的原型图片图 2.磁悬浮实验图片因为在每个线圈电流,这些线圈生成铁片有吸引力,克服重力,悬浮架挂起。控制变量法在实验系统上四个线圈的电压但每个线圈中的电流通常被视为中建模分析的控制变量。在实验中,由于电路中电感每个线圈的实际电流不能及时调整到所需的值。因此,应调整接近所需的电流值,在最少时间由 3 步电流控制算法中的应用。3 步电流控制算法的工作原理是采用时间最优控制方法,首先,尽可能快地跟踪当前的想法和理想电流可以得到与变结构控制策略根据跟踪误差,最后控制电

7、压保持当前设置可以确定线圈参数的在线辨识的基础上。在 14 中,作者介绍了此方法的详细信息,并通过实验证明其有效性。在下面的章节中,从3步法在系统实验结果得到了所有的结果 ;同时每个线圈中的电流被视为控制变量在建模分析。B. 非线性系统建模系统模型由悬架动态力学模型和电磁控制器模型组成。图 3 显示了悬架的动力学模型图 3.悬浮运动在空间中由牛顿定律可以推导出悬架动力学模型:根据以往电磁力研究13,气隙电流电磁力之间的关系可以描述如下:其中 k 是与每个线圈的物理参数相关的常数。由于四个线圈的机械和电气参数相同,在每个磁性力方程常数 k 是相同。这里根据实验标定,常数k=31.69(N*mm2

8、/A2)。初始气隙是 c = 3 毫米,所以在这个磁悬浮系统中,目标是通过调整每个电磁铁线圈中的电流,使悬浮架达到所需的z位置和所需的旋转角度。从上面的方程中,我们知道系统是高度非线性和耦合。任何线圈中的改变将导致整个系统的变化。如此的解耦方法和线性化,这系统将在下一节中详细说明。解耦和线性化系统很多研究中磁悬浮系统的建模都是基于泰勒级数的模型线性化。但这种假设是有当系统的变化很小这一限制的。在本节中,磁悬浮系统的建模基于考虑到系统的操作的种类繁多的物理方程。此外,电流优化用于解耦系统。在反馈线性化理论中的系统是伴随型,如果它的动力学可以表示为这里是的n阶导数,u是标量控制输入,x 是标量输出

9、,是状态向量。f (x)和b(x)其它是状态的非线性函数。上述方程可以写在作为一种等效的状态空间形式对于可以在可控标准型表达的系统,我们可以使用控制输入 (假定b不为零)为了取消非线性和获得简单的输入输出关系 (多重积分形式):其中 v 是由一个线性反馈控制器 (有待设计) 提供一个新的控制输入。给定的方程 (1) (2) (3) 假设:(10)式中u vp表示新的与实际输入 i1、 i2、 i3、 i4 相关的控制输入。与这些新的控制输入的非线性悬架系统可以看作是线性化的系统。图 4 显示的反馈线性化系统的框图。在实验控制系统中,有四个位置传感器下方四个铁盘子,这样,可以检测到每个铁盘中心

10、z1 z2 z3 z4 的 z 轴坐标。Z,因为,悬浮液可以直观描绘的位置和悬浮平台旋转状态,他们都选择了控制系统的控制变量。其结果是,位置信息 z1 z2 z3 z4 到 z 转化的换能器 2 在图 4 中。同样,在图 4 中的解耦 & 线性块需要气隙有关每个铁板 h1 h2 h3 h4,传感器1模块采用变换反馈信息 z1 z2 z3 z4 到 h1 h2 h3 h4。图4 反馈线性化与解耦系统通过使用新的控制输入,表达式 (1) (2) (3)可以重写为以下:结合(4)的增益将视为控制输入,在控制系统中他们应该被视为已知参数。这些已知的参数,与实际系统的输入 i1 i2 i3 i4 可以通

11、过求解联立方程组(14)-(16)。上述的联立方程表明该系统具有三个方程模型及其动态的行为,但在系统中有四个实际输入 (i1 i2 i3 i4)。它是另一个方程来确定唯一的根 i1 i2 i3 i4 缺乏。要解决此问题,可以在这里应用电流优化。这样问题转化为一个优化的问题。给定的约束的条件:找到矢量那么目标函数的结果最小化。这是一个典型的优化问题。求解这些方程 (14)-(15)可以通过 (14)-(16) 得到方程 (19)可以通过 (15)+(16) 得到方程 (20)自所以设可得不等式 (21):用方程(18)(19)(20),可以导出的 关于表达式:目标函数 (17) 可以按如下方式重

12、写:通过在内以找到适当的简化优化问题,在目标函数会得到最小值。由于得到的值,解方程(23)(24)(25)可以得到。函数(17)被设置为目标函数的原因是函数(17)的结果表示中每个时间间隔的总电流的电磁系统。因为函数(17)的结果最小化,在整个控制过程中,系统将消耗较少的能量。对系统有利。由于采用了电流优化算法,控制过程中最优算法的实时性应考虑。如果算法是如此的复杂控制系统的 CPU 不能正确的在一个控制周期 T内,该系统将是不稳定和此算法将不适合做系统。第五章中这电流优化的有效性将受到实时性检验。控制器的设计由于悬浮控制系统是通过电流优化和反馈线性化来解耦和线性化,线性化系统是一个关键的系统

13、。应设计控制器设置的极点和零点的 s 面左侧。采用该系统的线性控制器是一个相位超前控制器。相位超前控制器可稳定不稳定的解耦的系统,减少响应时间。相位超前控制器在磁性系统中应用的具体参数如下所示:该控制器用于控制 z 轴高度的悬浮质心和两个角度,以及。第五章中,将显示控制器的结果。实验结果A. 控制系统介绍实验硬件电路包括一个 PC 带有 PIII8000 CPU、 12 位 PCI-1713 A/D 板、 12 位 PCI-1723 D/A 板和线性功率放大器板。在实时控制过程中,A/D 板的采样率是 30 kHz。由于悬浮的固有频率是大约 200 Hz,系统控制率是 1 千赫。如果控制率太高

14、,它会导致控制系统中的噪音。要悬浮的位置信息,有四个位置传感器下方将四个铁片,以便每个铁板的 z 轴坐标可以转化为电压信号。在控制过程中,DOS 应用是作为操作系统平台因为它是一个实时操作系统。B. 解耦算法的实时性实验采用的解耦算法是一种典型的优化算法。在控制程序,黄金分割法用于查找所需的。为了验证该算法的实时性,在 PC 上进行数值实验。在实验中程序设计,并多次循环的优化过程。在程序中分发的优化程序将应用控制系统。当循环结束后时,将记录在循环过程中消耗的时间。该程序并优化程序的编程在 C 语言中,和在个人电脑上运行。通过设置不同的周期时间和记录占用的 CPU 时间,可以估计每个优化过程中消耗的实际时间。数值实验的结果是按表2 列出表2循环次数循环过程中消耗的 CPU 时间在每个优化过程中消耗的 CPU 时间100000.274725 (s)0.0274 (ms)20000

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1